Objective: Spinal and peripheral nerve tumors are a heterogeneous group of neoplasms that can be associated with significant morbidity and mortality despite the current standard of care. Immunotherapy is an emerging therapeutic option to improve the prognoses of these tumors. Therefore, the authors sought to present an updated and unifying review on the use of immunotherapy in treating tumors of the spinal cord and peripheral nerves, including a discussion on mechanism of action, drug delivery, current treatment techniques, and preclinical and clinical studies.

Methods: Current data in the literature regarding immunotherapy were collated and summarized. Targeted tumors included primary and secondary spinal tumors, as well as peripheral nerve tumors.

Results: Four primary modalities of immunotherapy (CAR T cell, monoclonal antibody, viral, and cytokine) have been reported to target spine and peripheral nerve tumors. Of the primary spinal tumors, spinal cord astrocytomas had the most preclinical evidence supporting immunotherapy success with CAR T-cell therapy targeting the H3K27M mutation, whereas spinal schwannomas and ependymomas had the most evidence reported for monoclonal antibody therapy preclinically. Of the secondary spinal tumors, primary CNS lymphomas demonstrated some clinical response to immunotherapy, whereas multiple myeloma and bone tumor experiences with immunotherapy were largely limited to concept only. Within peripheral nerve tumors, the use of immunotherapy to treat neurofibromas in the setting of syndromes has been suggested in theory, and possible immunotherapeutic targets have been identified in malignant peripheral nerve tumors. To date, there have been 2 clinical trials involving spine tumors and 2 clinical trials involving peripheral nerve tumors that have reported results, all of which are promising but require validation.

Conclusions: Immunotherapy to treat spinal and peripheral nerve tumors has become an emerging area of research and interest. A large amount of preclinical data supporting the translation of this therapy into practice, aimed at ameliorating the poor prognoses of specific tumors, have been reported. Future clinical studies for translation will focus on the optimal therapy type and administration route to best target these tumors, which often preclude total surgical resection given their proximity to the neural and vascular elements of the spine.

Download full-text PDF

Source
http://dx.doi.org/10.3171/2021.11.FOCUS21590DOI Listing

Publication Analysis

Top Keywords

peripheral nerve
32
nerve tumors
28
tumors
16
spinal peripheral
12
spinal tumors
12
spinal
9
peripheral
9
immunotherapy
9
nerve
8
tumors spinal
8

Similar Publications

Background: Angelman syndrome (AS), a severe neurodevelopmental disorder resulting from the loss of the maternal UBE3A gene, is marked by changes in the brain's white matter (WM). The extent of WM abnormalities seems to correlate with the severity of clinical symptoms, but these deficits are still poorly characterized or understood. This study provides the first large-scale measurement of WM volume reduction in children with AS.

View Article and Find Full Text PDF

Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration.

J Nanobiotechnology

December 2024

Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.

Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments.

View Article and Find Full Text PDF

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Adaptive remodeling of rat adrenomedullary stimulus-secretion coupling in a chronic hypertensive environment.

Cell Mol Life Sci

December 2024

Univ Angers, INSERM, CNRS, MITOVASC, Équipe CARME, SFR ICAT, F-49000 Angers, France.

Chronic elevated blood pressure impinges on the functioning of multiple organs and therefore harms body homeostasis. Elucidating the protective mechanisms whereby the organism copes with sustained or repetitive blood pressure rises is therefore a topical challenge. Here we address this issue in the adrenal medulla, the master neuroendocrine tissue involved in the secretion of catecholamines, influential hormones in blood pressure regulation.

View Article and Find Full Text PDF

Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) includes a number of clinical subtypes. The major phenotype is "typical CIDP," which is characterized by symmetric and "proximal and distal" muscle weakness. Due to historical changes in the concept of CIDP, multifocal motor neuropathy, anti-myelin-associated glycoprotein (anti-MAG) neuropathy, and autoimmune nodopathy were excluded.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!