Central nervous system trauma is a common cause of morbidity and mortality. Additionally, these injuries frequently occur in younger individuals, leading to lifetime expenses for patients and caregivers and the loss of opportunity for society. Despite this prevalence and multiple attempts to design a neuroprotectant, clinical trials for a pharmacological agent for the treatment of traumatic brain injury (TBI) or spinal cord injury (SCI) have provided disappointing results. Improvements in outcome from these disease processes in the past decades have been largely due to improvements in supportive care. Among the many challenges facing patients and caregivers following neurotrauma, posttraumatic nosocomial infection is a significant and potentially reversible risk factor. Multiple animal and clinical studies have provided evidence of posttraumatic systemic immune suppression, and injuries involving the CNS may be even more prone, leading to a higher risk for in-hospital infections following neurotrauma. Patients who have experienced neurotrauma with nosocomial infection have poorer recovery and higher risks of long-term morbidity and in-hospital mortality than patients without infection. As such, the etiology and reversal of postneurotrauma immune suppression is an important topic. There are multiple possible etiologies for these posttraumatic changes including the release of damage-associated molecular patterns, the activation of immunosuppressive myeloid-derived suppressor cells, and sympathetic nervous system activation. Postinjury systemic immunosuppression, particularly following neurotrauma, provides a challenge for clinicians but also an opportunity for improvement in outcome. In this review, the authors sought to outline the evidence of postinjury systemic immune suppression in both animal models and clinical research of TBI, TBI polytrauma, and SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931741PMC
http://dx.doi.org/10.3171/2021.11.FOCUS21586DOI Listing

Publication Analysis

Top Keywords

immune suppression
16
nervous system
12
central nervous
8
patients caregivers
8
nosocomial infection
8
systemic immune
8
postinjury systemic
8
system injury-induced
4
immune
4
injury-induced immune
4

Similar Publications

Plasticity of cell death pathways ensures GSDMD activation during Yersinia pseudotuberculosis infection.

Cell Rep

January 2025

Immunology Translational Research Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore. Electronic address:

Macrophages express pattern recognition and cytokine receptors that mediate proinflammatory signal transduction pathways to combat microbial infection. To retaliate against such responses, pathogenic microorganisms have evolved multiple strategies to impede innate immune signaling. Recent studies demonstrated that YopJ suppression of TAK1 signaling during Yersinia pseudotuberculosis infection promotes the assembly of a RIPK1-dependent death-inducing complex that enables caspase-8 to directly cleave and activate gasdermin D (GSDMD).

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a malignancy arising from the epithelium of the nasopharynx. Given its late diagnosis, NPC raises serious considerations in Southeast Asia. In addition to resistance to conventional treatment that combines chemotherapy and radiation, NPC has high rates of metastasis and frequent recurrence.

View Article and Find Full Text PDF

Introduction: Opportunistic infections (IO) are infections of microbiota (fungi, viruses, bacteria, or parasites) that generally do not cause disease but turn into pathogens when the body's defense system is compromised. This can be triggered by various factors, one of which is due to a weakened immune system due to Diabetes Mellitus (DM), which increases the occurrence of opportunistic infections, especially in the oral cavity. Fungal (oral candidiasis) and viral (recurrent intraoral herpes) infections can occur in the oral cavity of DM patients.

View Article and Find Full Text PDF

This chapter reviews tumor-associated myeloid cells, including macrophages, neutrophils, and other innate immune cells, and their multifaceted roles in supporting breast cancer progression and metastasis. In primary tumors, myeloid cells play key roles in promoting tumor epithelial-mesenchymal transition (EMT) and invasion. They can facilitate intravasation (entry into the bloodstream) and colonization, disrupting the endothelial cell layer and reshaping the extracellular matrix.

View Article and Find Full Text PDF

Introduction: Since late 2019, SARS-CoV-2 has infected over 767 million people worldwide with over one million deaths in the United States alone. One risk factor identified for possible worse outcomes from the virus is medication-induced immune suppression. Some opioids have been associated with immunomodulatory effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!