During this study, the bioremediation potential of zinc-oxide nanoparticles (ZnO-NPs) and PGPR mixed biofertilizer (BF) on maize plants under induced arsenic (As) stress of 50 ppm and 100 ppm was investigated. The treated plants showed increased As resistance to mitigate the adverse effects of stress by enhancing fresh and dry biomass, relative water content, protein content, soluble sugars, proline content, enzymatic antioxidant defense mechanisms including activities of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), superoxide dismutase (SOD), and malondialdehyde (MDA) content. In the pot experiment, the parameters studied have shown that the integrated treatments of ZnO-NPs and BF cause a notable enhancement in relative water content 43%-50% and plant biomass. Moreover, the same treatment showed a marked upregulation in enzymes activity (APX, SOD, APX, and CAT) which oxidized the cell-damaging ROS, produced in response to As stress. Likewise, the combined treatment showed a maximum reduction in MDA content 46%-57% and electrolyte leakage in As treated plants as compared to stressed plants. On the other hand, total soluble sugar 114%-170% and total protein content 117%-241% escalated. SEM analysis revealed marked damage reduction in the treated cells caused by arsenic toxicity. Thus, the use of BF comprised of rhizobacteria along with ZnO-NPs could be a very effective bio source for improving maize plant growth under As stress. In in silico study, As mediated network of proteins showed positive and negative regulation of As activity that leads to stress generation for housekeeping genome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.133796 | DOI Listing |
Int J Cell Biol
January 2025
Department of Biotechnology and Plant Breeding, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
Radiation therapy is one of the most effective treatments for approximately 60% of patients with cancer. During radiation exposure, the overproduction of reactive oxygen species (ROS) disrupts the lipid layer of the membrane, leading to subsequent peroxide radical formation. Cimetidine (Cim) and famotidine (Fam) are histamine H2 receptor antagonists (H2 blocker), also known as peptic ulcer drugs, that exert radioprotective effects.
View Article and Find Full Text PDFColorectal cancer (CRC) is a prevalent and deadly disease, necessitating the exploration of novel therapeutic strategies. Traditional chemotherapy often encounters drug resistance and adverse side effects, highlighting the need for alternative approaches. , a plant rich in phytochemical constituents, was investigated for its potential as an anticancer agent against colorectal cancer (CRC).
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Plant Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia University of Belgrade Belgrade Serbia.
(L.) Roxb. and (L.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology Obu-city Aichi Japan.
Geraniol is an acyclic monoterpene alcohol that is extracted from the essential oils of aromatic plants. Geraniol has several biological activities such as anti-cancer, anti-inflammatory, antioxidant, and neuroprotective effects. However, the pharmacokinetics of geraniol and its metabolites after oral administration remain unknown in mice.
View Article and Find Full Text PDFIn the Rutaceae family is the biggest among all fruits, tradtionally used for several purposes due to its diverse ethnomedicinal, phytochemical, and pharmacological activities. Different portions of this plant have been used as sedatives and anti-inflammatory medications, as well as to treat coughs, fevers, asthma, diarrhea, ulcers, and diabetes. There is a scientific potential for the methanolic seed extract to contain bioactive compounds, similar to those found in other parts of the plant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!