Membrane Mixer: A Toolkit for Efficient Shuffling of Lipids in Heterogeneous Biological Membranes.

J Chem Inf Model

Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Published: February 2022

Molecular dynamics (MD) simulations of biological membranes have achieved such levels of sophistication that are commonly used to predict unresolved structures and various properties of lipids and to substantiate experimental data. While achieving sufficient sampling of lipid dynamics remains a major challenge, a commonly used method to improve lipid sampling, e.g., in terms of specific interactions with membrane-associated proteins, is to randomize the initial arrangement of lipid constituents in multiple replicas of simulations, without changing the overall lipid composition of the membrane of interest. Here, we introduce a method that can rapidly generate multiple replicas of lipid bilayers with different spatial and conformational configurations for any given lipid composition. The underlying algorithm, which allows one to shuffle lipids at any desired level, relies on the application of an external potential, here referred to as the "carving potential", that removes clashes/entanglements before lipid positions are exchanged (shuffled), thereby minimizing the energy penalty due to abrupt lipid repositioning. The method is implemented as "Membrane Mixer Plugin (MMP) 1.0" in VMD, with a convenient graphical user interface that guides the user in setting various options and parameters. The plugin is fully automated and generates new membrane replicas more rapidly and conveniently than other analogous tools. The plugin and its capabilities introduced here can be extended to include additional features in future versions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8892574PMC
http://dx.doi.org/10.1021/acs.jcim.1c01388DOI Listing

Publication Analysis

Top Keywords

biological membranes
8
lipid
8
multiple replicas
8
lipid composition
8
membrane mixer
4
mixer toolkit
4
toolkit efficient
4
efficient shuffling
4
shuffling lipids
4
lipids heterogeneous
4

Similar Publications

Generic Elasticity of Thermal, Underconstrained Systems.

Phys Rev Lett

December 2024

CPT, CNRS, Aix Marseille Univ, Université de Toulon, (UMR 7332), Turing Center for Living Systems, Marseille, France.

Athermal (i.e., zero-temperature) underconstrained systems are typically floppy, but they can be rigidified by the application of external strain, which is theoretically well understood.

View Article and Find Full Text PDF

Isolation of Soil Microorganisms Using iChip Technology.

J Vis Exp

January 2025

Charlottetown Research and Development Center, Agriculture and Agri-Food Canada; Department of Chemistry, University of Prince Edward Island;

The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods.

View Article and Find Full Text PDF

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione protects against MPP-induced neurotoxicity by ameliorating oxidative stress, apoptosis and autophagy in SH-SY5Y cells.

Metab Brain Dis

January 2025

Key Laboratory of Longevity and Aging-Related Disease of Chinese Ministry of Education, Center for Translational Medicine, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

2-dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) is a cyclohexanedione compound extracted from the roots of Averrhoa carambola L. Several studies have documented its beneficial effects on diabetes, Alzheimer's disease, and cancer. However, its potential neuroprotective effects on Parkinson's disease (PD) have not yet been explored.

View Article and Find Full Text PDF

Molecular Imaging for Biomimetic Nanomedicine in Cancer Therapy: Current Insights and Challenges.

ACS Appl Mater Interfaces

January 2025

Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Coating biological membranes onto biomimetic nanocarriers improves biocompatibility, prolongs circulation, and enhances targeted delivery for cancer precision medicine. To better understand the biodistribution profiles of these biomimetic nanosystems, molecular imaging techniques, including optical imaging, radionuclide imaging, magnetic resonance imaging, and ultrasound imaging, have been widely employed for in vivo tracking and dynamic imaging. Here in this review, we delve into the profound role of these imaging modalities in visualizing changes in the tumor microenvironment, particularly in monitoring oxygen consumption and immune response dynamics, highlighting their potential to improve cancer therapies.

View Article and Find Full Text PDF

Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!