Achieving a Record-High Capacitive Energy Density on Si with Columnar Nanograined Ferroelectric Films.

ACS Appl Mater Interfaces

Department of Mechanics, School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China.

Published: February 2022

High energy density dielectric film capacitors are desirable in modern electronic devices. Their miniaturization and integration into Si-based microsystems create opportunities for in-circuit energy supply, buffering, and conditioning. Here, we present a CMOS (complementary metal oxide semiconductor)-compatible route for the fabrication of BaTiO film capacitors on Si with a record-high recoverable energy density and good efficiency (∼242 J/cm and ∼76% at 8.75 MV/cm). These BaTiO films were sputter-deposited at 350 °C and consisted of slightly compressed superfine columnar nanograins with a (001) texture. Such a nanostructure was endowed with a high breakdown strength, a reduced remnant polarization, and an enhanced maximum polarization, which are accountable for their excellent energy storage performance. Moreover, these BaTiO film capacitors displayed a high electrical fatigue resistance, a wide range of operating temperatures, and an excellent frequency stability. With an engineered nanostructure, the prototype perovskite of BaTiO has shown great promise for capacitive energy storage applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c19197DOI Listing

Publication Analysis

Top Keywords

energy density
12
film capacitors
12
capacitive energy
8
batio film
8
energy storage
8
energy
6
achieving record-high
4
record-high capacitive
4
density columnar
4
columnar nanograined
4

Similar Publications

Multilayer thin films composed of dielectric BaCaZrTiO (BCZT) and oxygen-deficient BCZT (BCZT-OD) were fabricated on (001)-oriented NSTO substrates using the pulsed laser deposition (PLD) technique. Unlike conventional approaches to energy storage capacitors, which primarily focus on compositional or structural modifications, this study explored the influence of the layer sequence and periodicity. The interface between the NSTO substrate and the BCZT-OD layer forms a Schottky barrier, resulting in electric field redistribution across the sublayers of the BCZT/BCZT-OD//(1P) thin film.

View Article and Find Full Text PDF

Tailoring a High Loading Atomic Zinc with Weak Binding to Sodium Toward High-Energy Sodium Metal Batteries.

Small

January 2025

Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian, 350117, China.

Single-atom materials provide a platform to precisely regulate the electrochemical redox behavior of electrode materials with atomic level. Here, a multifield-regulated sintering route is reported to rapidly prepare single-atom zinc with a very high loading mass of 24.7 wt.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Valorization of mixed blackwater/agricultural wastes for bioelectricity and biohydrogen production: A microbial treatment pathway.

Heliyon

January 2025

African Centre of Excellence in Future Energies and Electrochemical Systems (ACE-FUELS), Federal University of Technology, Owerri, PMB 1526, Imo State, Nigeria.

The management of wastewater and agricultural wastes has been limited by the separate treatment processes, which exacerbate pollution and contribute to climate change through greenhouse gas emissions. Given the energy demands and financial burdens of traditional treatment facilities, there is a pressing need for technologies that can concurrently treat solid waste and generate energy. This study aimed to evaluate the feasibility of producing bioelectricity and biohydrogen through the microbial treatment of blackwater and agricultural waste using a dual-chamber Microbial Fuel Cell (MFC).

View Article and Find Full Text PDF

Charge Transfer Effect in Layered Cathodes Through MEMS-Based In Situ TEM Studies.

Small

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing WUT Nano Key Lab, Wuhan, Hubei, 430070, China.

The irreversible lattice oxygen release is the primary issue in layered oxide cathodes which is generally attributed to a consecutive phase transition with less lattice oxygen content. Herein, an anomalous metal segregation pathway is observed in oxygen vacancy defective layered cathodes, which happens far before the onset of phase transitions. The correlation of electron energy loss spectroscopy indicates that an early charge transfer from oxygen 2p to Mn 3d orbital is responsible.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!