RNA interference targeting Ras GTPase gene Ran causes larval and adult lethality in Leptinotarsa decemlineata.

Pest Manag Sci

Agriculture Ministry Key Laboratory of Integrated Pest Management on Crops in East China/State and Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.

Published: September 2022

Background: RNA interference (RNAi) is a breakthrough technology in pest control. It is highly efficient to Coleopteran pests such as the Colorado potato beetle Leptinotarsa decemlineata, a serious pest defoliator mainly attacking potatoes worldwide. The first step for effective pest control by RNAi is the development of effective and reliable target genes.

Results: Our results revealed that continuous ingestion of dsLdRan for 3 days successfully silenced the target gene, inhibited larval growth and killed 100% L. decemlineata larvae. When the bioassay began at the second-, third/fourth-instar larval stages, the larval lethality mainly occurred at the fourth larval instar and prepupal stages, respectively. Importantly, consumption of dsLdRan for 3 days by the newly-emerged males and females effectively knocked down the target transcript, reduced fresh weights and caused 100% of lethality within a week. The LdRan females possessed underdeveloped ovaries.

Conclusion: Considering that the larvae, adults and eggs are simultaneously sited on the potato plants, bacterially-expressed dsLdRan is a potential RNAi-based strategy for managing L. decemlineata in the potato field. © 2022 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.6822DOI Listing

Publication Analysis

Top Keywords

rna interference
8
leptinotarsa decemlineata
8
pest control
8
dsldran 3 days
8
larval
5
interference targeting
4
targeting ras
4
ras gtpase
4
gtpase gene
4
gene larval
4

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.

View Article and Find Full Text PDF

Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.

View Article and Find Full Text PDF

Maize is one of the major crops that are susceptible to infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to suppress the -methyl transferase gene (, also called ), a key gene involved in aflatoxin biosynthesis. An RNAi vector carrying part of the gene was introduced into the B104 maize line.

View Article and Find Full Text PDF

Groundbreaking Technologies and the Biocontrol of Fungal Vascular Plant Pathogens.

J Fungi (Basel)

January 2025

Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.

This review delves into innovative technologies to improve the control of vascular fungal plant pathogens. It also briefly summarizes traditional biocontrol approaches to manage them, addressing their limitations and emphasizing the need to develop more sustainable and precise solutions. Powerful tools such as next-generation sequencing, meta-omics, and microbiome engineering allow for the targeted manipulation of microbial communities to enhance pathogen suppression.

View Article and Find Full Text PDF

ADP-ribosylation is a reversible modification of proteins and nucleic acids, which controls major cellular processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress, and immunity in plants and animals. The involvement of ADP-ribosylation in the life cycle of and some filamentous fungi has also been demonstrated. However, the role of this process in pathogenic oomycetes has never been addressed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!