Photodynamic therapy (PDT) is an effective anticancer modality approved by the U.S. Food and Drug Administration (FDA). Antitumor immunity can be augmented during PDT by inducing sterile inflammation in an acute manner, and this process is characterized by interleukin 17 (IL-17)-mediated neutrophil infiltration to tumor-draining lymph nodes (TDLNs). However, the inflammatory factors that influence IL-17 expression in TDLNs are poorly understood. Prior studies have linked the cyclooxygenase 2 (COX2)-driven prostaglandin E (PGE2) pathway to IL-17 expression. Here, we report that an immune-activating PDT regimen (imPDT) induces COX2/PGE2 expression in TDLNs, whereby IL-17 expression is facilitated without corresponding effects on the expression of RORγt, the transcriptional driver of the canonical IL-17 pathway. Pharmacologic inhibition with NS398, a COX2 inhibitor, was utilized to demonstrate that imPDT-induced COX2 regulates RORγt-independent expression of IL-17 by B cells and neutrophil entry into TDLNs. Depletion of B cells prior to imPDT significantly reduced neutrophil entry into TDLNs following treatment, and diminishes the efficacy of imPDT, which is dependent upon antitumor immunity. These findings are suggestive of a novel role for B cells in the augmentation of antitumor immunity by imPDT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9484206PMC
http://dx.doi.org/10.1111/php.13601DOI Listing

Publication Analysis

Top Keywords

antitumor immunity
12
il-17 expression
12
expression
8
tumor-draining lymph
8
lymph nodes
8
neutrophil infiltration
8
expression tdlns
8
neutrophil entry
8
entry tdlns
8
tdlns
5

Similar Publications

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a fatal disease, and radioresistance is an important factor leading to treatment failure and disease progression. The objective of this research was to detect radioresistance-related genes (RRRGs) with prognostic value in NSCLC.

Methods: The weighted gene coexpression network analysis (WGCNA) and differentially expressed genes (DEGs) analysis were performed to identify RRRGs using expression profiles from TCGA and GEO databases.

View Article and Find Full Text PDF

Metabolic Signaling in the Tumor Microenvironment.

Cancers (Basel)

January 2025

Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.

View Article and Find Full Text PDF

Background: Immunosenescence is the aging of the immune system, which is closely related to the development and prognosis of lung cancer. Targeting immunosenescence is considered a promising therapeutic approach.

Methods: We defined an immunosenescence gene set (ISGS) and examined it across 33 TCGA tumor types and 29 GTEx normal tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!