Sodium pentachlorophenol (NaPCP) is a highly toxic and persistent organic pollutant. With sepiolite as the support, a series of TiO-Sep nanocomposites (NCs) with different Ti/Sep ratios were developed. The objective was to understand the effect of Ti/Sep ratio on the structure and activity of the NCs in aqueous and soil systems and to evaluate the feasibility of the NCs for in situ soil remediation. The prepared NCs were characterized with XRD, SEM, TEM, and N adsorption-desorption, respectively. The results showed that high surface area and good dispersion of TiO on sepiolite surface were obtained. The photocatalytic activities in aqueous and soil of the as-developed NCs were examined using NaPCP as a model pollutant. Compared with bare sepiolite and TiO, the heterogeneous NCs showed significantly higher photocatalytic performance in decomposing NaPCP, and the photocatalytic activities varied with the content of TiO in the NCs. In aqueous media, treatment with TiO-S-30 showed excellent degradation efficiency with about 90% NaPCP decomposed in 140 min. Nevertheless, the sample TiO-S-20 promotes maximum rate reduction of NaPCP with above 90% within 20-h irradiation in soil. The results indicate that an appropriate Ti/Sep ratio could significantly enhance the activities of NCs on NaPCP remediation and the role of carrier sepiolite is more important in soil media than that in aqueous phase. The excellent performance of the TiO-Sep in wastewater degradation and soil remediation can be attributed to the synergistic effects between the high photocatalytic activity of TiO nanoparticles and the strong adsorption capacity of sepiolite nanofibers. This work revealed that sepiolite adsorption coupled with TiO photocatalysis can be one promising technique for in situ remediation of NaPCP-contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-18924-6DOI Listing

Publication Analysis

Top Keywords

aqueous soil
12
tio-sep nanocomposites
8
situ remediation
8
sodium pentachlorophenol
8
soil
8
ncs
8
ti/sep ratio
8
ncs aqueous
8
soil remediation
8
photocatalytic activities
8

Similar Publications

Co-application of hydrothermal carbonization aqueous phase and biogas slurry reduced ammonia volatilization in paddy.

J Environ Manage

January 2025

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.

Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.

View Article and Find Full Text PDF
Article Synopsis
  • Conventional in-situ hydrocarbon remediation technologies struggle with high costs and limited effectiveness, making aqueous foam injection a more promising solution for better volumetric sweeping efficiency.
  • This study focuses on polymer-enhanced foams (PEFs), specifically examining how Xanthan Gum (XG) biopolymer affects foam stability and flow in contaminated soils, using two types of PEFs: one based on Sodium Dodecyl Sulfate (SDS) and another blending SDS with Cocamidopropyl Hydroxysultane (SC).
  • Results show that XG enhances foam stability through increased viscosity and improved interactions with surfactants, leading to higher recovery rates of hydrocarbons compared to traditional methods, suggesting a valuable avenue for future remediation efforts
View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Optimizing soil remediation with multi-functional L-PH hydrogel: Enhancing water retention and heavy metal stabilization in farmland soil.

Sci Total Environ

December 2024

Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:

Agricultural soils face severe challenges, including water scarcity and heavy metal contamination. Optimizing soil remediation efficiency while minimizing inputs is essential. This study assessed the water retention and heavy metal adsorption properties of L-PH hydrogel through aqueous experiments.

View Article and Find Full Text PDF

Urea is a major issue in human wastewater because it may be easily broken down by the urease enzyme produced by bacteria, leading to ammonia production. Due to its ability to increase soil pH and eutrophicate streams, ammonia-containing effluent emissions pose environmental and health risks. This study aimed to evaluate the effectiveness of various treatment approaches in reducing urea concentrations by comparing the removal rates of conducting electrocoagulation (EC), EC followed by chemical coagulation (EC-CC), and CC followed by electrocoagulation (EC-CC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!