Multiple myeloma (MM) remains incurable due to relapse, although the use of proteasome inhibitors, immunomodulatory drugs, CD38-targeting antibodies, and autologous stem cell transplantation (auto-SCT) significantly improve the clinical outcomes of patients with newly diagnosed MM. In recent years, the introduction of chimeric antigen receptor T-cell (CAR T-cell) therapy has brought hope to patients with refractory and relapsed MM. The graft-versus-myeloma effect of allogeneic SCT provides the possibility for curing a subset of MM patients. In this review, we summarize the recent advances and challenges of cellular immunotherapies for MM, focusing on auto-SCT, allogeneic SCT, and CAR T-cell approaches. We also discuss future directions, and propose a specific algorithm for cellular therapies for MM and probability of minimal residual disease-directed therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9098731PMC
http://dx.doi.org/10.1007/s40487-022-00186-4DOI Listing

Publication Analysis

Top Keywords

cellular immunotherapies
8
multiple myeloma
8
future directions
8
car t-cell
8
allogeneic sct
8
immunotherapies multiple
4
myeloma current
4
current status
4
status challenges
4
challenges future
4

Similar Publications

T-cell receptor (TCR) therapies are a promising modality for the treatment of cancers, with significant efforts being directed towards acute myeloid leukaemia (AML), a particularly challenging disease. Chimeric antigen receptor (CAR) T-cells targeting single surface antigens have shown remarkable efficacy for B-cell lymphoblastic leukaemia, lymphomas and multiple myeloma. However, AML presents formidable obstacles to the effectiveness of CAR T-cells due to the widespread expression of heterogenous leukaemia immunophenotypes and surface antigen targets additionally present on normal myeloid cells.

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Opioidergic activation of the descending pain inhibitory system underlies placebo analgesia.

Sci Adv

January 2025

Laboratory for Biofunction Dynamics Imaging, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.

Placebo analgesia is caused by inactive treatment, implicating endogenous brain function involvement. However, the neurobiological basis remains unclear. In this study, we found that μ-opioid signals in the medial prefrontal cortex (mPFC) activate the descending pain inhibitory system to initiate placebo analgesia in neuropathic pain rats.

View Article and Find Full Text PDF

Functional proteins/peptides targeting to clear Amyloid-β for Alzheimer's disease therapy.

Chembiochem

January 2025

China Pharmaceutical University, Department of Pharmaceutical Science, #639 Longmian Dadao, Jiangning District, 211198, Nanjing, CHINA.

Alzheimer's disease (AD) is a significant neurodegenerative disorder primarily affecting individuals over the age of 65. It is characterized by impairments in memory, thinking, analytical judgment, visuospatial recognition, and mood. In recent years, the development of protein and peptide drugs targeting amyloid-beta (Aβ) has gained momentum, with several therapies entering clinical trials and even receiving marketing approval.

View Article and Find Full Text PDF

Cancer cells present sialylated glycoconjugates that modulate the activity of various immune cells within the tumor microenvironment through trans interaction with immunosuppressive Siglec receptors. Identifying counter receptors for Siglecs can provide valuable targets for cancer immunotherapy, but it presents significant challenges. Here, the identification of DSG2 (Desmoglein 2) as a dominant counter receptor of Siglec-9 in melanoma cells is reported, using a workflow that combines the strength of proximity labeling and the advantage of CRISPR knockout screening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!