Computational methods to understand interactions in bio-complex systems are however limited to time-scales typically much shorter than in Nature. For example, on the nanoscale level, interactions between nanoparticles (NPs)/molecules/peptides and membranes are central in complex biomolecular processes such as membrane-coated NPs or cellular uptake. This can be remedied by the application of Jarzynski's equality where thermodynamic properties are extracted from non-equilibrium simulations. Although, the out of equilibrium work leads to non-conservative forces. We here propose a correction Pair Forces method, that removes these forces. Our proposed method is based on the calculation of pulling forces in backward and forward directions for the Jarzynski free-energy estimator using steered molecular dynamics simulation. Our results show that this leads to much improvement for NP-membrane translocation free energies. Although here we have demonstrated the application of the method in molecular dynamics simulation, it could be applied for experimental approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp05218gDOI Listing

Publication Analysis

Top Keywords

jarzynski free-energy
8
free-energy estimator
8
non-conservative forces
8
molecular dynamics
8
dynamics simulation
8
forces
5
modified jarzynski
4
estimator eliminate
4
eliminate non-conservative
4
forces application
4

Similar Publications

This paper addresses the complementarity and potential disparities between single-molecule and ensemble-average approaches to probe the binding mechanism of oligopeptides on inorganic solids. Specifically, we explore the peptide/gold interface owing to its significance in various topics and its suitability to perform experiments both in model and real conditions. Experimental results show that the studied peptide adopts a lying configuration upon adsorption on the gold surface and interacts through its peptidic links and deprotonated thiolate extremities, in agreement with theoretical predictions.

View Article and Find Full Text PDF

Time-asymmetric fluctuation theorem and efficient free-energy estimation.

Phys Rev E

September 2024

Department of Physics, University of California, Berkeley, Berkeley, California 94720, USA.

The free-energy difference ΔF between two high-dimensional systems is notoriously difficult to compute but very important for many applications such as drug discovery. We demonstrate that an unconventional definition of work introduced by Vaikuntanathan and Jarzynski (2008) satisfies a microscopic fluctuation theorem that relates path ensembles that are driven by protocols unequal under time reversal. It has been shown before that counterdiabatic protocols-those having additional forcing that enforces the system to remain in instantaneous equilibrium, also known as escorted dynamics or engineered swift equilibration-yield zero-variance work measurements for this definition.

View Article and Find Full Text PDF

Free Energy Evaluation of Cavity Formation in Metastable Liquid Based on Stochastic Thermodynamics.

Entropy (Basel)

August 2024

Department of Mechanical Engineering and Science, Kyoto University, Kyoto 615-8540, Japan.

Nucleation is a fundamental and general process at the initial stage of first-order phase transition. Although various models based on the classical nucleation theory (CNT) have been proposed to explain the energetics and kinetics of nucleation, detailed understanding at nanoscale is still required. Here, in view of the homogeneous bubble nucleation, we focus on cavity formation, in which evaluation of the size dependence of free energy change is the key issue.

View Article and Find Full Text PDF

The Jarzynski equality allows the calculation of free-energy differences using values of work measured from nonequilibrium trajectories. The number of trajectories required to accurately estimate free-energy differences in this way grows sharply with the size of work fluctuations, motivating the search for protocols that perform desired transformations with minimum work. However, protocols of this nature can involve varying temperature, to which the Jarzynski equality does not apply.

View Article and Find Full Text PDF

We demonstrate experimentally that, applying optimal protocols that drive the system between two equilibrium states characterized by a free energy difference ΔF, we can maximize the probability of performing the transition between the two states with a work W smaller than ΔF. The second law holds only on average, resulting in the inequality ⟨W⟩≥ΔF. The experiment is performed using an underdamped oscillator evolving in a double-well potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!