The beam scanner is a predominant part in the light detection and ranging (LiDAR) system to achieve three-dimensional (3D) imaging. The solid-state beam-steering device has emerged as a promising candidate technology for a beam scanner with the advantages of robustness, stability, and high scanning speed. Here we propose a frequency modulated continuous wave (FMCW) LiDAR system with an in-fiber solid-state beam scanner. A 45° tilted fiber grating (TFG) is first employed to achieve in-fiber solid-state spectral scanning in the LiDAR system. A maximum output efficiency of 93.7% is achieved with proper polarization control. A single-mode fiber is then used to fabricate a 2-cm 45° TFG, which significantly reduces the size and the cost of the beam scanner in the LiDAR system. We experimentally realize 3D imaging of targets placed at a distance of 1.2 m based on our proposed LiDAR system. In addition, the system can achieve a detection distance of 6 m with a ranging precision of 24 mm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.440940 | DOI Listing |
BMC Oral Health
January 2025
Resident of Oral and Maxillofacial Radiology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Early detection of peri-implant bone defects can improve long-term durability of dental implants. By the advances in cone-beam computed tomography (CBCT) scanners and introduction of new algorithms, it is important to find the most efficient protocol for detection of bone defects. This study aimed to assess the efficacy of metal artifact reduction (MAR) and advanced noise reduction (ANR) algorithms for detection of peri-implant bone defects.
View Article and Find Full Text PDFPhys Med
January 2025
Department of Physics "A. Pontremoli", University of Milan & INFN sez. Milano, Milano, Italy. Electronic address:
Purpose: This work aims at investigating, via in-silico evaluations, the noise properties of an innovative scanning geometry in cone-beam CT (CBCT): eCT. This scanning geometry substitutes each of the projections in CBCT with a series of collimated projections acquired over an oscillating scanning trajectory. The analysis focused on the impact of the number of the projections per period (PP) on the noise characteristics.
View Article and Find Full Text PDFImaging Sci Dent
December 2024
Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy.
Purpose: This study aimed to evaluate the impact of a metal artifact reduction (MAR) algorithm on cone-beam computed tomography (CBCT) scans of titanium and zirconia implants, both within and outside the field of view (FOV).
Materials And Methods: In this study, a dry human mandible was positioned in a CBCT scanner with only its left quadrant included in the FOV. Each type of implant (titanium and zirconia) was placed once in the right second premolar extraction socket and once in the left second premolar extraction socket of the mandible.
J Dent
December 2024
OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Leuven, Belgium; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!