Nontypeable (NTHi) are clinically important Gram-negative bacteria that are responsible for various human mucosal diseases, including otitis media (OM). Recurrent OM caused by NTHi is common, and infections that recur less than 2 weeks following antimicrobial therapy are largely attributable to the recurrence of the same strain of bacteria. Toxin-antitoxin (TA) modules encoded by bacteria enable rapid responses to environmental stresses and are thought to facilitate growth arrest, persistence, and tolerance to antibiotics. The locus of NTHi encodes a type II TA system, comprising the ribonuclease toxin VapC1 and its cognate antitoxin VapB1. The activity of VapC1 has been linked to the survival of NTHi during antibiotic treatment both and . Therefore, inhibitors of VapC1 might serve as adjuvants to antibiotics, preventing NTHi from entering growth arrest and surviving; however, none have been reported to date. A truncated VapB1 peptide from a crystal structure of the VapBC-1 complex was used to generate pharmacophore queries to facilitate a scaffold hopping approach for the identification of small-molecule VapC1 inhibitors. The National Center for Advancing Translational Sciences small-molecule library was virtually screened using the shape-based method rapid overlay of chemical structures (ROCS), and the top-ranking hits were docked into the VapB1 binding pocket of VapC1. Two hundred virtual screening hits with the best docking scores were selected and tested in a biochemical VapC1 activity assay, which confirmed eight compounds as VapC1 inhibitors. An additional 60 compounds were selected with structural similarities to the confirmed VapC1 inhibitors, of which 20 inhibited VapC1 activity. Intracellular target engagement of five inhibitors was indicated by the destabilization of VapC1 within bacterial cells from a cellular thermal shift assay; however, no impact on bacterial growth was observed. Thus, this virtual screening and scaffold hopping approach enabled the discovery of VapC1 ribonuclease inhibitors that might serve as starting points for preclinical development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10041999 | PMC |
http://dx.doi.org/10.1021/acs.jcim.1c01188 | DOI Listing |
Microorganisms
August 2024
Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brasil, 1500, São Paulo 05503-900, Brazil.
Bacterial ubiquitous Toxin-Antitoxin (TA) systems are considered to be important survival mechanisms during stress conditions. In regular environmental conditions, the antitoxin blocks the toxin, whereas during imbalanced conditions, the antitoxin concentration decreases, exposing the bacteria cell to a range of toxic events. The most evident consequence of this disequilibrium is cell growth arrest, which is the reason why TAs are generally described as active in the function of bacterial growth kinetics.
View Article and Find Full Text PDFJ Chem Inf Model
March 2022
National Center for Advancing Translational Sciences (NCATS), 9800 Medical Center Drive, Rockville, Maryland 20850, United States.
Nontypeable (NTHi) are clinically important Gram-negative bacteria that are responsible for various human mucosal diseases, including otitis media (OM). Recurrent OM caused by NTHi is common, and infections that recur less than 2 weeks following antimicrobial therapy are largely attributable to the recurrence of the same strain of bacteria. Toxin-antitoxin (TA) modules encoded by bacteria enable rapid responses to environmental stresses and are thought to facilitate growth arrest, persistence, and tolerance to antibiotics.
View Article and Find Full Text PDFJ Bacteriol
June 2019
Office of the Dean, College of Sciences, Old Dominion University, Norfolk, Virginia, USA
Toxin-antitoxin (TA) gene pairs have been identified in nearly all bacterial genomes sequenced to date and are thought to facilitate persistence and antibiotic tolerance. TA loci are classified into various types based upon the characteristics of their antitoxins, with those in type II expressing proteic antitoxins. Many toxins from type II modules are ribonucleases that maintain a PilT N-terminal (PIN) domain containing conserved amino acids considered essential for activity.
View Article and Find Full Text PDFJ Bioenerg Biomembr
April 2019
School of Bio Sciences & Technology, VIT, Vellore, Tamil Nadu, 632014, India.
Vasoactive intestinal polypeptide receptor 1 (VPAC1) and epidermal growth factor receptor (EGFR) are associated with signal transduction pathways relevant to neuroblastoma, cancer of breast, prostate and lungs. In order to identify appropriate ligand analogues for simultaneous inhibition of EGFR and VPAC1, in-silico homology modelling of VPAC1 and its characterization by molecular interaction studies have been undertaken. Homology modelling was performed with the Swiss Model and validation of the predicted 3D structure was carried out using PROCHECK and RAMPAGE.
View Article and Find Full Text PDFPLoS One
February 2019
School of Science, University of Waikato, Hamilton, New Zealand.
The chromosome of Mycobacterium tuberculosis (Mtb) contains a large number of Type II toxin-antitoxin (TA) systems. The majority of these belong to the VapBC TA family, characterised by the VapC protein consisting of a PIN domain with four conserved acidic residues, and proposed ribonuclease activity. Characterisation of five VapC (VapC1, 19, 27, 29 and 39) proteins from various regions of the Mtb chromosome using a combination of pentaprobe RNA sequences and mass spectrometry revealed a shared ribonuclease sequence-specificity with a preference for UAGG sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!