During laparoscopic surgery, the Veress needle is commonly used in pneumoperitoneum establishment. Precise placement of the Veress needle is still a challenge for the surgeon. In this study, a computer-aided endoscopic optical coherence tomography (OCT) system was developed to effectively and safely guide Veress needle insertion. This endoscopic system was tested by imaging subcutaneous fat, muscle, abdominal space, and the small intestine from swine samples to simulate the surgical process, including the situation with small intestine injury. Each tissue layer was visualized in OCT images with unique features and subsequently used to develop a system for automatic localization of the Veress needle tip by identifying tissue layers (or spaces) and estimating the needle-to-tissue distance. We used convolutional neural networks (CNNs) in automatic tissue classification and distance estimation. The average testing accuracy in tissue classification was 98.53 ± 0.39%, and the average testing relative error in distance estimation reached 4.42 ± 0.56% (36.09 ± 4.92 μm).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9097560PMC
http://dx.doi.org/10.1002/jbio.202100347DOI Listing

Publication Analysis

Top Keywords

veress needle
20
endoscopic optical
8
optical coherence
8
coherence tomography
8
convolutional neural
8
neural networks
8
small intestine
8
tissue classification
8
distance estimation
8
average testing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!