Photothermally triggered melting and perfusion: responsive colloidosomes for cytosolic delivery of membrane-impermeable drugs in tumor therapy.

J Mater Chem B

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing 400044, China.

Published: February 2022

A cell membrane barrier which dominates the therapeutic efficacy and systemic side effects is a major bottleneck in the field of drug delivery. Herein, a therapeutic system capable of photothermally triggered on-demand and cytosolic delivery was achieved by polydopamine (PDA) nanoparticle-stabilized colloidosomes. An organic phase change material (PCM, saturated fatty acids) was employed as the lipid core for Pickering emulsification and drug encapsulation, and arginine was utilized as a linker to induce the directional interactions between nanoemulsion droplets and heterogeneously nucleated PDA nanoparticles. Moreover, the PDA particle stabilizers concomitantly mediated the grafting of hydrophilic polymer PEG to further improve dispersibility. The resultant colloidosomes after cooling possess lowered melting points and superior dispersion stability over 7 days. When irradiated with near-infrared light (808 nm), sequential processes of fatty acid melting and direct drug perfusion into the cytosol took place within 10 min. The employment of vorinostat (SAHA, histone deacetylase inhibitor) as a model membrane-impermeable drug resulted in remarkable enhancement of anti-cancer effects both (5.2 fold reduction in IC50) and (7.3 fold increase in tumor inhibition rate) with respect to the free drug. The remotely triggered transformable nanoplatform paves a new avenue of responsive and efficient cytosolic perfusion to overcome biological membrane barriers on the basis of colloidosomes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb02503aDOI Listing

Publication Analysis

Top Keywords

photothermally triggered
8
cytosolic delivery
8
drug
5
triggered melting
4
melting perfusion
4
perfusion responsive
4
colloidosomes
4
responsive colloidosomes
4
colloidosomes cytosolic
4
delivery membrane-impermeable
4

Similar Publications

Injectable, self-healing and phase change nanocomposite gels loaded with two nanotherapeutic agents for mild-temperature, precise and synergistic photothermal-thermodynamic tumor therapy.

J Colloid Interface Sci

December 2024

School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, PR China. Electronic address:

Hyperthermia has emerged as a popular treatment option due to its high efficacy and seamless integration with other therapeutic approaches. To enhance treatment outcomes, hydrogels loaded with photothermal agents and activated by near-infrared (NIR) light for localized tumor therapy have attracted considerable attention. This approach minimizes drug dosage and mitigates the adverse effects of systemic drug delivery on healthy tissues.

View Article and Find Full Text PDF

Dentin hypersensitivity (DH), marked by exposed dentinal tubules, presents as a sharp toothache triggered by stimuli and subsides when the stimuli are removed. To address the limitations of current commercial desensitizers in terms of acid resistance, friction resistance, and stability, a black phosphorus nanosheet-composited methacrylate gelatin hydrogel (GelMA/BP) is developed for DH treatment, leveraging the synergistic effects of photothermal therapy and biomineralization. Incorporating the BP nanosheet provided GelMA/BP with a stable photothermal response and the continuous release of phosphate anions, which blocked dentinal tubules by converting light energy into heat and initiating biomineralization.

View Article and Find Full Text PDF

Mitochondria-Targeting Virus-Like Gold Nanoparticles Enhance Chemophototherapeutic Efficacy Against Pancreatic Cancer in a Xenograft Mouse Model.

Int J Nanomedicine

January 2025

Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People's Republic of China.

Background: The dense and fibrotic nature of the pancreatic tumor microenvironment significantly contributes to tumor invasion and metastasis. This challenging environment acts as a formidable barrier, hindering effective drug penetration and delivery, which ultimately limits the efficacy of conventional cancer treatments. Gold nanoparticles (AuNPs) have emerged as promising nanocarriers to overcome the extracellular matrix barrier; however, their limited targeting precision, poor delivery efficiency, and insufficient photothermal conversion present challenges.

View Article and Find Full Text PDF

Colon cancer is one kind of malignant digestive tract tumor with high morbidity and mortality worldwide, treatments for which still face great challenges. Recently emerged intervention strategies such as phototherapy and gas therapy have displayed promising effects in the treatment of colon cancer, but their application are still hindered due to insufficient tumor targeting and deeper tissue penetrating capacity. Herein, in the present study, we developed one theranostic nanoplatform Cet-CDs-SNO (CCS) to realize multimodal imaging-guided synergistic colon cancer therapy.

View Article and Find Full Text PDF

Hybrid membrane based biomimetic nanodrug with high-efficient melanoma-homing and NIR-II laser-amplified peroxynitrite boost properties for enhancing antitumor therapy via effective immunoactivation.

Biomaterials

December 2024

Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:

Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!