A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting Coupled Herbs for the Treatment of Hypertension Complicated with Coronary Heart Disease in Real-World Data Based on a Complex Network and Machine Learning. | LitMetric

AI Article Synopsis

  • Hypertension and coronary heart disease are common heart problems, and traditional Chinese medicine is used to help treat them.
  • This study looked at medical records from a hospital to find out which herbs work best together for these diseases using special computer programs.
  • They found 70 combinations of herbs that can help treat these conditions by working on inflammation and other body processes, making it easier to understand how they can be used in real medicine.

Article Abstract

Hypertension and coronary heart disease are the most common cardiovascular diseases, and traditional Chinese medicine is applied as an auxiliary treatment for common cardiovascular diseases. This study is based on 3 years of electronic medical record data from the Affiliated Hospital of Shandong University of Traditional Chinese Medicine. A complex network and machine learning algorithm were used to establish a screening model of coupled herbs for the treatment of hypertension complicated with coronary heart disease. A total of 5688 electronic medical records were collected to establish the prescription network and symptom database. The hierarchical network extraction algorithm was used to obtain core herbs. Biological features of herbs were collected from public databases. At the same time, five supervised machine learning models were established based on the biological features of the coupled herbs. Finally, the K-nearest neighbor model was established as a screening model with an AUROC of 91.0%. Seventy coupled herbs for adjuvant treatment of hypertension complicated with coronary heart disease were obtained. It was found that the coupled herbs achieved the purpose of adjuvant therapy mainly by interfering with cytokines and regulating inflammatory and metabolic pathways. These results show that this model can integrate the molecular biological characteristics of herbs, preliminarily screen combinations of herbs, and provide ideas for explaining the value in clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800635PMC
http://dx.doi.org/10.1155/2022/8285111DOI Listing

Publication Analysis

Top Keywords

coupled herbs
20
coronary heart
16
heart disease
16
treatment hypertension
12
hypertension complicated
12
complicated coronary
12
machine learning
12
herbs
9
herbs treatment
8
complex network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!