1,4-Dioxane is a pervasive and persistent contaminant in numerous aquifers. Although the median concentration in most contaminant plumes is in the microgram per liter range, a subset of sites have contamination in the milligram per liter range. Most prior studies that have examined 1,4-dioxane concentrations in the hundreds of milligrams per liter range have been performed with industrial wastewater. The main objective of this study was to evaluate aerobic biodegradation of 1,4-dioxane in microcosms prepared with soil and groundwater from a site where concentrations range from ~ 1500 mg·L in the source zone, to 450 mg·L at a midpoint of the groundwater plume, and to 6 mg·L at a down-gradient location. Treatments included biostimulation with propane, addition of propane and a propanotrophic enrichment culture (ENV487), and unamended. The highest rates of biodegradation for each location in the plume occurred in the bioaugmented treatments, although indigenous propanotrophs also biodegraded 1,4-dioxane to below 25 µg·L. Nutrient additions were required to sustain biodegradation of propane and cometabolism of 1,4-dioxane. Among the unamended treatments, biodegradation of 1,4-dioxane was detected in the mid-gradient microcosms. An isolate was obtained that grows on 1,4-dioxane as a sole source of carbon and energy and identified through whole-genome sequencing as Pseudonocardia dioxivorans BERK-1. In a prior study, the same strain was isolated from an aquifer in the southeastern United States. Monod kinetic parameters for BERK-1 are similar to those for strain CB1190.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10532-022-09971-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!