IMD/ADM2 operates as a secretory factor that controls cumulus-oocyte complexes (COCs) conformation for oocytes in vitro maturation.

In Vitro Cell Dev Biol Anim

Facultad de Zootecnia Y Ecología, Universidad Autónoma de Chihuahua (UACH), Perif. R. Aldama Km 1, 31031, Chihuahua, Mexico.

Published: February 2022

During in vitro maturation (IVM), the compact structure of cumulus-oocyte complexes (COCs) is vital for oocyte competence acquisition. Intermedin/Adrenomedullin-2 (IMD/ADM2) binds to the receptor RAMP (1, 2, or 3):CLR. Recently, it was demonstrated that IMD/ADM2 stimulates oocyte competence and improves bovine embryo quality. Therefore, this study aimed to examine the IMD/ADM2 as a secretory factor controlling COCs conformation for oocyte maturation. The results showed that traditional M-CDM medium induced in COCs the Imd/Adm2 gene expression during IVM and produced IMD/ADM2 peptide secretion. Furthermore, after IVM, in the oocytes, the expression of ramps (1, 2, or 3) and clr was demolished, and RAMPs and CLR proteins were decreased, with a negative Pearson correlation. These results suggest that RAMPs and CLR are synthesized and stored during oocyte maturation. Supplementing the M-CDM with α-RAMP1 or α-IMD/ADM2 antibodies elicits a negative effect (P < 0.05) in COCs compaction. Blocking the IMD/ADM2 signaling pathway with any α-RAMPs or α-CLR antibodies produces a similar lower yield of oocytes in metaphase II (P > 0.05) but was lower than control culture medium (P < 0.05). In conclusion, when COCs are cultured with M-CDM, the IMD/ADM2 becomes expressed and secreted. In turn, it acts as a ligand preferentially to RAMP1:CLR or RAMP3:CLR, present in cumulus cells and oocytes. Sequentially, COCs compact structure is conformed to promote an adequate bidirectional communication that conduces the oocytes' maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11626-022-00647-0DOI Listing

Publication Analysis

Top Keywords

ramps clr
12
secretory factor
8
cumulus-oocyte complexes
8
complexes cocs
8
cocs conformation
8
vitro maturation
8
oocyte competence
8
oocyte maturation
8
imd/adm2
6
imd/adm2 operates
4

Similar Publications

Functional Analysis and Tissue-Specific Expression of Calcitonin and CGRP with RAMP-Modulated Receptors CTR and CLR in Chickens.

Animals (Basel)

March 2024

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, China.

Calcitonin (CT) and calcitonin gene-related peptide (CGRP) are critical regulators of calcium balance and have extensive implications for vertebrate physiological processes. This study explores the CT and CGRP signaling systems in chickens through cloning and characterization of the chicken calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR), together with three receptor activity-modifying proteins (RAMPs). We illuminated the functional roles for chickens between the receptors examined alone and in RAMP-associated complexes using luciferase reporter assays.

View Article and Find Full Text PDF

Signalling of the calcitonin-like receptor (CLR) is multifaceted, due to its interaction with receptor activity modifying proteins (RAMPs), and three endogenous peptide agonists. Previous studies have focused on the bias of G protein signalling mediated by the receptor and receptor internalisation of the CLR-RAMP complex has been assumed to follow the same pattern as other Class B1 G Protein-Coupled Receptors (GPCRs). Here we sought to measure desensitisation of the three CLR-RAMP complexes in response to the three peptide agonists, through the measurement of β-arrestin recruitment and internalisation.

View Article and Find Full Text PDF

Modulating effects of RAMPs on signaling profiles of the glucagon receptor family.

Acta Pharm Sin B

February 2022

The National Center for Drug Screening and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China.

Receptor activity-modulating proteins (RAMPs) are accessory molecules that form complexes with specific G protein-coupled receptors (GPCRs) and modulate their functions. It is established that RAMP interacts with the glucagon receptor family of GPCRs but the underlying mechanism is poorly understood. In this study, we used a bioluminescence resonance energy transfer (BRET) approach to comprehensively investigate such interactions.

View Article and Find Full Text PDF

During in vitro maturation (IVM), the compact structure of cumulus-oocyte complexes (COCs) is vital for oocyte competence acquisition. Intermedin/Adrenomedullin-2 (IMD/ADM2) binds to the receptor RAMP (1, 2, or 3):CLR. Recently, it was demonstrated that IMD/ADM2 stimulates oocyte competence and improves bovine embryo quality.

View Article and Find Full Text PDF

Knockout technologies provide insights into physiological roles of genes. Studies initiated into endocrinology of heteromeric G protein-coupled receptors included deletion of receptor activity modifying protein-3, an accessory protein that alters ligand selectivity of calcitonin and calcitonin-like receptors. Initially, deletion of appeared phenotypically silent, but it has emerged that mice have a high bone mass phenotype, and more subtle alterations to angiogenesis, amylin homeostasis, and a small proportion of the effects of adrenomedullin on cardiovascular and lymphatic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!