When studying the dynamics of trait distribution of populations in a heterogeneous environment, classical models from quantitative genetics choose to look at its system of moments, specifically the first two ones. Additionally, in order to close the resulting system of equations, they often assume the local trait distributions are Gaussian [see for instance Ronce and Kirkpatrick (Evolution 55(8):1520-1531, 2001. https://doi.org/10.1111/j.0014-3820.2001.tb00672.x.37 )]. The aim of this paper is to introduce a mathematical framework that follows the whole trait distribution (without prior assumption) to study evolutionary dynamics of sexually reproducing populations. Specifically, it focuses on complex traits, whose inheritance can be encoded by the infinitesimal model of segregation (Fisher in Trans R Soc Edinb 52(2):399-433, 1919. https://doi.org/10.1017/S0080456800012163 ). We show that it allows us to derive a regime in which our model gives the same dynamics as when assuming Gaussian local trait distributions. To support that, we compare the stationary problems of the system of moments derived from our model with the one given in Ronce and Kirkpatrick (Evolution 55(8):1520-1531, 2001. https://doi.org/10.1111/j.0014-3820.2001.tb00672.x.37 ) and show that they are equivalent under this regime and do not need to be otherwise. Moreover, under this regime of equivalence, we show that a separation bewteen ecological and evolutionary time scales arises. A fast relaxation toward monomorphism allows us to reduce the complexity of the system of moments, using a slow-fast analysis. This reduction leads us to complete, still in this regime, the analytical description of the bistable asymmetrical equilibria numerically found in Ronce and Kirkpatrick (Evolution 55(8):1520-1531, 2001. https://doi.org/10.1111/j.0014-3820.2001.tb00672.x.37 ). More globally, we provide explicit modelling hypotheses that allow for such local adaptation patterns to occur.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00285-021-01712-0 | DOI Listing |
Clin Biomech (Bristol)
January 2025
Univ. Polytechnique Hauts-de-France, LAMIH, CNRS, UMR 8201, F-59313 Valenciennes, France.
Background: Multiple sclerosis induces locomotor impairments. The objective was to characterize the effects of Multiple Sclerosis on whole-body angular momentum control during gait initiation.
Methods: Fifteen patients with Multiple Sclerosis with Expanded Disability status scale of 2.
J Multidiscip Healthc
January 2025
Department of Neurobiology, Care Science and Society (NVS), Division of Occupational Therapy, Karolinska Institutet, Stockholm, Sweden.
Background: The care of older persons is facing several challenges, especially as care tasks are becoming increasingly rationalized with less opportunity for relational engagement between nurse assistants and older persons. Evidence suggests this engagement is needed to promote well-being and satisfaction among the older persons with whom they work. The aim of this study was to explore how care, in the context of worker perspectives, is understood and experienced in home or residential care facilities.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Precision Geodesy, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.
Interplay between seismic and aseismic slip could shed light on the frictional properties and seismic potential of faults. The well-recorded 2023 Kahramanmaraş earthquake doublet provides an excellent opportunity to understand their partitioning on strike-slip faults. Here, we utilize InSAR and strong motion data to derive the coseismic rupture during the doublet, ~4-month postseismic afterslip, and slip distributions of two Mw>6.
View Article and Find Full Text PDFGait Posture
January 2025
Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE 68182, USA; Department of Surgery and Research Service, Nebraska-Western Iowa Veterans Affairs Medical Center, Omaha, NE 68105, USA. Electronic address:
Background: This study leverages Artificial Neural Networks (ANNs) to predict lower limb joint moments and electromyography (EMG) signals from Ground Reaction Forces (GRF), providing a novel perspective on human gait analysis. This approach aims to enhance the accessibility and affordability of biomechanical assessments using GRF data, thus eliminating the need for costly motion capture systems.
Research Question: Can ANNs use GRF data to accurately predict joint moments in the lower limbs and EMG signals?
Methods: We employed ANNs to analyze GRF data and to use them to predict joint moments (363-trials; 4-datasets) and EMG signals (63-trials; 2-datasets).
PLoS One
January 2025
Department of Management Science, Strathclyde Business School, University of Strathclyde, Glasgow, Scotland.
Objective: To conceptualise the cognitive processes of early expert decision-making in urgent care.
Background: Expert clinicians in the UK frequently determine suitable urgent care patient pathways via telephone triage. This strategy is promoted by policymakers but how it is performed, and its effectiveness has not been evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!