Trees can live for many centuries with sustained fecundity and death is largely stochastic. We use a neutral stochastic model to examine tree demographic patterns that emerge over time, across a range of population sizes and empirically observed mortality rates. A small proportion of trees (~1% at 1.5% mortality) are life-history 'lottery winners', achieving ages >10-20× the median age. Maximum age increases with bigger populations and lower mortality rates. One-quarter of trees (~24%) achieve ages that are three to four times greater than the median age. Three age classes (mature, old and ancient) contribute unique evolutionary diversity across complex environmental cycles. Ancient trees are an emergent property of forests that requires many centuries to generate. They radically change variance in generation time and population fitness, bridging centennial environmental cycles. These life-history 'lottery' winners are vital to long-term forest adaptive capacity and provide invaluable data about environmental history and individual longevity. Old and ancient trees cannot be replaced through restoration or regeneration for many centuries. They must be protected to preserve their invaluable diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41477-021-01088-5 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Earth Sciences, Montana State University, Bozeman, MT 59717.
Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).
View Article and Find Full Text PDFPlants (Basel)
December 2024
Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Desert Poplar Research Center of Tarim University, College of Life Science and Technology, Tarim University, Alar 843300, China.
All multicellular organisms undergo senescence, but the continuous division of the vascular cambium in plants enables certain tree species to survive for hundreds or even thousands of years. Previous studies have focused on the development of the vascular cambium, but the mechanisms regulating age-related changes remain poorly understood. This study investigated age-related changes in the vascular cambium of trees aged 50 to 350 years.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China.
: Lindl. & Paxton is an ornamental tree species native to North China. Research on the mitochondrial genome can elucidate the evolution and biological characteristics of and better protect this important species.
View Article and Find Full Text PDFSci Rep
January 2025
Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan.
The chloroplast (cp) genome is a widely used tool for exploring plant evolutionary relationships, yet its effectiveness in fully resolving these relationships remains uncertain. Integrating cp genome data with nuclear DNA information offers a more comprehensive view but often requires separate datasets. In response, we employed the same raw read sequencing data to construct cp genome-based trees and nuclear DNA phylogenetic trees using Read2Tree, a cost-efficient method for extracting conserved nuclear gene sequences from raw read data, focusing on the Aurantioideae subfamily, which includes Citrus and its relatives.
View Article and Find Full Text PDFMol Phylogenet Evol
December 2024
Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA.
Species relationships and speciation have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!