In this proof-of-concept study, we explore the detection of pesticides in food using a combined power of sensitive UV-induced fingerprint spectroscopy with selective capture by molecularly imprinted polymers (MIPs) and portable cost-effective paper-based analytical devices (PADs). The specific pesticides used herein as model compounds (both pure substances and their application products for spraying), were: strobilurins (i.e. trifloxystrobin), urea pesticides (rimsulfuron), pyrethroids (cypermethrine) and aryloxyphenoxyproponic acid herbicides (Haloxyfop-methyl). Commercially available spraying formulations containing the selected pesticides were positively identified by MIP-PADs swabs of sprayed apple and tomato. The key properties of MIP layer - imprinting factor (IF) and selectivity factor (α) were characterized using trifloxystrobin (IF-3.5, α-4.4) was demonstrated as a potential option for in-field application. The presented method may provide effective help with in-field testing of food and reveal problems such as false product labelling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2022.132141 | DOI Listing |
Food Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
Department of Veterinary Medicine and Animal Science (DIVAS), University of Milan, Lodi, Italy.
Beehives can accumulate environmental contaminants as bees gather pollen, propolis, and water from their surroundings, contaminating hive products like honey. Moreover, in multifloral environments, bees can interact with plants treated with different pesticides, often causing higher pesticides concentrations in multi-floral honey than in mono-floral varieties. Glyphosate and glufosinate are both widely used herbicides.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:
Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.
Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.
Anal Chim Acta
January 2025
School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China. Electronic address:
Background: Carbosulfan (CBS) is a widely used carbamate pesticide in agricultural production, its easy decomposition into hypertoxic carbofuran poses serious threats to human health and food safety. Therefore, sensitive and accurate detection of CBS is of significant importance. Conventional chromatography-based techniques require expensive instruments and complicated sample pretreatment, limiting their application for fast detection.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India. Electronic address:
Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA; Materials Engineering and Science Program, State University of New York at Binghamton, Binghamton, NY, 13902, USA. Electronic address:
Background: Pesticides are widely used in agriculture to control pests and enhance crop yields. However, post-harvest, there are growing concerns about the potential health risks posed by pesticide residues on produce surfaces. Analyzing these residues is challenging due to their typically low concentrations and the potential interference from the complex matrix of the produce's surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!