Components of a HIV-1 vaccine mediate virus-like particle (VLP)-formation and display of envelope proteins exposing broadly neutralizing epitopes.

Virology

Research Group Pharmaceutical Biotechnology, Faculty of Applied Natural Sciences, TH Köln - University of Applied Sciences, Chempark Leverkusen E28, Kaiser-Wilhelm-Allee, 51368, Leverkusen, Germany. Electronic address:

Published: March 2022

The sequence diversity of HIV-1 is the biggest hurdle for the design of a prophylactic vaccine. Mosaic (Mos) antigens consisting of synthetically shuffled epitopes from various HIV-1 strains are currently tested in the clinical vaccine trial Mosaico (NCT03964415). Besides adenovirus vectors encoding variants of Mos.Gag-Pol and soluble Mos.Env proteins, the Mosaico vaccine entails vectors mediating gene transfer and expression of the membrane-anchored Env-variant Mos2S.Env. We thus examined whether the expression of mosaic Gag mediates the formation of virus-like particles (VLPs). Mos1.Gag- and Mos2.Gag-VLP-formation was readily detected using Western blot- and electron microscopic-analysis. Upon co-expression of both mosaic Gag variants with Mos2S.Env, incorporation of Env into Gag-formed VLPs was observed. The display of the respective neutralization-sensitive target epitopes on Mos2S.Env-decorated VLPs was demonstrated employing a panel of broadly neutralizing antibodies (bNAbs) in a VLP-capture assay. This opens new perspectives for future HIV vaccine designs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.virol.2022.01.008DOI Listing

Publication Analysis

Top Keywords

broadly neutralizing
8
mosaic gag
8
vaccine
5
components hiv-1
4
hiv-1 vaccine
4
vaccine mediate
4
mediate virus-like
4
virus-like particle
4
particle vlp-formation
4
vlp-formation display
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!