Deep neural networks (DNNs) have achieved physician-level accuracy on many imaging-based medical diagnostic tasks, for example classification of retinal images in ophthalmology. However, their decision mechanisms are often considered impenetrable leading to a lack of trust by clinicians and patients. To alleviate this issue, a range of explanation methods have been proposed to expose the inner workings of DNNs leading to their decisions. For imaging-based tasks, this is often achieved via saliency maps. The quality of these maps are typically evaluated via perturbation analysis without experts involved. To facilitate the adoption and success of such automated systems, however, it is crucial to validate saliency maps against clinicians. In this study, we used three different network architectures and developed ensembles of DNNs to detect diabetic retinopathy and neovascular age-related macular degeneration from retinal fundus images and optical coherence tomography scans, respectively. We used a variety of explanation methods and obtained a comprehensive set of saliency maps for explaining the ensemble-based diagnostic decisions. Then, we systematically validated saliency maps against clinicians through two main analyses - a direct comparison of saliency maps with the expert annotations of disease-specific pathologies and perturbation analyses using also expert annotations as saliency maps. We found the choice of DNN architecture and explanation method to significantly influence the quality of saliency maps. Guided Backprop showed consistently good performance across disease scenarios and DNN architectures, suggesting that it provides a suitable starting point for explaining the decisions of DNNs on retinal images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2022.102364 | DOI Listing |
Brain Sci
January 2025
Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA.
Objective: Functional magnetic resonance imaging data pose significant challenges due to their inherently noisy and complex nature, making traditional statistical models less effective in capturing predictive features. While deep learning models offer superior performance through their non-linear capabilities, they often lack transparency, reducing trust in their predictions. This study introduces the Time Reversal (TR) pretraining method to address these challenges.
View Article and Find Full Text PDFTransl Vis Sci Technol
January 2025
School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.
Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.
Brain
January 2025
Department of Neurology, University of South Carolina, Columbia, SC 29203, USA.
Despite decades of advancements in diagnostic MRI, 30-50% of temporal lobe epilepsy (TLE) patients remain categorized as "non-lesional" (i.e., MRI negative or MRI-) based on visual assessment by human experts.
View Article and Find Full Text PDFEur J Radiol
January 2025
School of Biomedical Engineering & Imaging Sciences, King's College London, London, the United Kingdom of Great Britain and Northern Ireland; Department of Neuroradiology, King's College Hospital National Health Service Foundation Trust, London, the United Kingdom of Great Britain and Northern Ireland. Electronic address:
Artificial intelligence (AI) tools can triage radiology scans to streamline the patient pathway and also relieve clinician workload. Validated AI tools can mitigate the delays in reporting scans by flagging time-sensitive and actionable findings. In this study, we aim to investigate current stakeholder perspectives and identify obstacles to integrating AI in clinical pathways.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, 90127, Italy. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!