Human beings play an important role in a smart manufacturing economy. The repetitive and cognitive demanding task operations of smart manufacturing require the development of system models for measuring and predicting human performance, including oil refinery monitoring tasks. The main objective of this research was to validate the generalizability of a mathematical model for the prediction of refinery operators' detection of abnormal events. Moreover, we examined operators' visual behaviors in response to abnormal situations at different ages and with different task loads, task complexities, and input devices. We found that participants had lower mean fixation durations, total fixation numbers, and fixation/saccade ratios when they were in the condition of a touchscreen device. Moreover, we found that older adults had higher mean saccade durations and saccade amplitudes when they were in the condition of a touchscreen device. Finally, the statistical model borrowed from our prior paper was found to be generalizable to different task loads and age groups for the prediction of operators' detection of abnormal events. Our results showed that visual behaviors can indicate specific internal states of participants, including their cognitive workload, attention, and situation awareness in a real-time manner. The findings provide additional support for the value of using visual behavior to predict responsiveness of oil refinery operators and for future applications of smart manufacturing monitoring systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.apergo.2022.103697 | DOI Listing |
ACS Nano
January 2025
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.
Natural skin receptors use ions as signal carriers, while most of the developed artificial tactile sensors utilize electrons as information carriers. To imitate the biological ionic sensing behavior, here, we present a kind of biomimetic, ionic, and fully passive mechanotransduction mechanism leveraging mechanical modulation of interfacial ionic p-n junction (IPNJ) through microchannels. Sensors based on this mechanism do not rely on an external power supply and can encode external tactile stimuli into highly analogous signal outputs to those of natural skin receptors, in terms of both signal type (i.
View Article and Find Full Text PDFSci Rep
January 2025
College of Rare Earth, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
Utilizing aerosol jet printing (AJP), this study achieves a breakthrough in fabricating luminescent fibers with superior optical performance and flexibility. The YO:Eu coated high silica glass fibers demonstrate luminous efficiency twice that of traditional methods, retaining 80% after 250 bending cycles and 90% after sweat immersion. This AJP technique not only elevates the potential of smart fabrics but also represents a significant innovation in lighting technology, providing new ideas for advanced functional fiber fabrication.
View Article and Find Full Text PDFACS Sens
January 2025
School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.
Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.
Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China.
The effectiveness of ultraviolet-C light-emitting diodes (UVC LEDs) is currently limited by the lack of suitable encapsulation materials, restricting their use in sterilization, communication, and in vivo cancer tumor inhibition. This study evaluates various silicone oils for UVC LED encapsulation. A material aging experiment was conducted on CF1040 (octamethylcyclotetrasiloxane), HF2020 (methyl hydro polysiloxanes), and MF2020-1000 (polydimethylsiloxane) under UVC radiation for 1000 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!