The unascertained, constant mutation and emergence of new types of microorganisms present significant challenges to their detection. Differing from the focus on the limited local 16S rRNA gene or protein markers, characteristic whole fingerprint technologies at the omic level are particularly suitable for unknown analytes since accurate knowledge about the constituents is not necessarily required. Herein, through a combination of several innovative strategies, including pure water isotachophoresis integrated (2 + 1)D electrophoresis, inversion-funnel peak stacking channel geometry and COMSOL computer-aided fluid simulation, high-resolution whole protein 2D native microfluidic chip electrophoresis was achieved within less than 1 min. The highest ever reported peak capacity for native 2D chip electrophoresis was obtained. Furthermore, taking Escherichia coli, Staphylococcus aureus, and Bacillus subtilis as model analytes without protein biomarker information, the feasibility of the identification and semiqualification of unknown microbes in pure or mixed samples was explored with the utilisation of original algorithms, including SIFT feature abstraction and a global information entropy combined support vector machine. As such, the multidisciplinary cooperation in the present study demonstrates monstrated promising prospects for microfluidic chip electropherogram fingerprint-based quick microorganism assays, biointeraction studies, and drug screenings, even if the analytes are not fully ascertained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2021.462797 | DOI Listing |
Lab Chip
January 2025
State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China.
Organoids-on-a-chip exhibit significant potential for advancing disease modeling, drug screening, and precision medicine, largely due to their capacity to facilitate interactions among organoids. However, the influence of chip design on these interactions remains poorly understood, primarily due to our limited knowledge of the mediators of communication and the complexity of interaction dynamics. This study demonstrates that analyzing albumin secretion from liver organoids within an organoids-on-a-chip system can provide a measure of the interaction intensity among organoids, offering valuable insights into how chip design influences these interactions.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Surface Physics and Department of Physics, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
Numerous chemical reactions and most life processes occur in aqueous solutions, where the physical diffusion of small molecules plays a vital role, including solvent water molecules, solute biomolecules, and ions. Conventional methods of measuring diffusion coefficients are often limited by technical complexity, large sample consumption, or significant time cost. Here, we present an optical imaging method to study molecular diffusion by combining stimulated Raman scattering (SRS) microscopy with microfluidics: a "Y"-shaped microfluidic channel forming two laminar flows with a stable concentration gradient across the interface.
View Article and Find Full Text PDFEur J Cell Biol
January 2025
The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, Saint Louis, MO, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA. Electronic address:
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK.
To enable in vitro investigation of human skin immunology, this study develops a microfluidic human skin equivalent (HSE) that supports the delivery of circulating immune cells via a vascular microchannel embedded within the dermis of a full-thickness construct. Within this platform, activation of keratinocyte inflammation promotes monocyte migration out of the vascular channel and into the dermal and epidermal compartments. Single-cell transcriptomic analysis reveals dynamic and cell-specific patterns of gene expression that are characteristic of acute activation and resolution of an inflammatory immune response, and the gene signatures of the monocyte-derived cells closely matches the differentiation trajectory of the monocytes into mature dermal macrophages.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!