The widespread and the recognition of the multifactorial nature of Alzheimer disease (AD) increased the demands for multi-targeted directed ligands (MTDLs) to overcome possible drug-drug interactions of the combination therapy, and to acquire superior therapeutic profile than single targeted molecules. Two main scaffolds namely: pyrazolopyridine and tetrahydroacridine (THA) were used to synthesize four different series of integrated multi-targeted synthons possessing ChE (hAChE or hBuChE), Aβ aggregation inhibition potency, in addition to optimum metal chelating capability. Structure modifications were performed to 9-amino function of THA core of tacrine and the pyrazolopyridine scaffolds linked to a variety of cyclic secondary amines directly or using amide spacers or ethylamine bridge or engaging THA with pyrazolopyridine to produce hybrid compounds. Different 9-amino substitutions improved the in vitro hAChE activity of 7- or 6,7-disubstituted THA derivatives. Compounds 16 and 28 proved to be multimodal anti-AD agents as they were potent hAChE inhibitors, in addition, they could bind with the amino acids of the peripheral anionic site (PAS) affecting Aβ aggregation and hence Aβ-dependent neurotoxicity especially compound 16 which was almost twofold more active than donepezil. Furthermore, both compounds directly inhibited Aβ self-aggregation and chelated bio-metals such as Fe, Zn and Cu preventing reactive oxygen species (ROS) generation by Aβ and its oxidative damage in the brain regions of AD patients. Compound 28 had superior privilege by its dual ChE activity resulting in better cognitive improvement. Compounds 16 and 28 showed acceptable relative safety upon hepG2 cell line and excellent BBB penetration with wide safety margin as their LD were higher than 120 mg/kg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2022.114152DOI Listing

Publication Analysis

Top Keywords

aβ aggregation
8
synthesis biological
4
biological evaluation
4
evaluation molecular
4
molecular modeling
4
modeling simulations
4
simulations heterocyclic
4
heterocyclic hybrids
4
hybrids multi-targeted
4
multi-targeted anti-alzheimer's
4

Similar Publications

ClpB, a bacterial homologue of heat shock protein 104 (Hsp104), can disentangle aggregated proteins with the help of the DnaK, a bacterial Hsp70, and its co-factors. As a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA), ClpB forms a hexameric ring structure, with each protomer containing two AAA modules, AAA1 and AAA2. A long coiled-coil middle domain (MD) is present in the C-terminal region of the AAA1 and surrounds the main body of the ring.

View Article and Find Full Text PDF

Structural determinants for protein unfolding and translocation by the Hsp104 protein disaggregase.

Biosci Rep

December 2017

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, U.S.A.

Article Synopsis
  • *Key to Hsp104's function are specific amino acid loops in its ATP-binding domains that play crucial roles in substrate translocation and interaction.
  • *Research shows that both flanking aliphatic residues and loop-2 are vital for Hsp104's activity; mutations can significantly impair its function in disaggregating proteins.
View Article and Find Full Text PDF

Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase.

Front Mol Biosci

February 2017

Center for Molecular Biology of the Heidelberg University, German Cancer Research Center Heidelberg, Germany.

The members of the hexameric AAA+ disaggregase of and , ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis.

View Article and Find Full Text PDF

Analysis of the cooperative ATPase cycle of the AAA+ chaperone ClpB from Thermus thermophilus by using ordered heterohexamers with an alternating subunit arrangement.

J Biol Chem

April 2015

From the Department of Biology, Faculty of Science and Engineering and the Institute for Integrative Neurobiology, Konan University, Okamoto 8-9-1, Kobe 658-8501, Japan

Article Synopsis
  • * The chaperone utilizes ATP binding and hydrolysis to generate mechanical force necessary for disaggregating proteins, although the details of its ATPase cycle remain complex and poorly understood across different species.
  • * Research on ordered structures of ClpB from Thermus thermophilus revealed that ATP binding is random initially, but once enough ATP binds to one ring, it activates the other ring for cooperative ATP hydrolysis, which is essential for the protein disaggregation function of ClpB.
View Article and Find Full Text PDF

ClpB, a member of the expanded superfamily of ATPases associated with diverse cellular activities (AAA+), forms a ring-shaped hexamer and cooperates with the DnaK chaperone system to reactivate aggregated proteins in an ATP-dependent manner. The ClpB protomer consists of an N-terminal domain, an AAA+ module (AAA-1), a middle domain, and a second AAA+ module (AAA-2). Each AAA+ module contains highly conserved WalkerA and WalkerB motifs, and two arginines (AAA-1) or one arginine (AAA-2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!