Microbes in subsurface oil reservoirs play important roles in elemental cycles and biogeochemical processes. However, the community assembly pattern of indigenous microbiome and their succession under long-term human activity remain poorly understood. Here we studied the microbial community assembly in underground sandstone cores from 190 to 2050 m in northeast China and their response to long-term oil recovery (10-50 years). Indigenous microbiome in subsurface petroleum reservoirs were dominated by Gammaproteobacteria, Firmicutes, Alphaproteobacteria, Bacteroidetes, and Actinobacteria, which exhibited a higher contribution of homogenizing dispersal assembly and different taxonomy distinct ecological modules when compared with perturbed samples. Specifically, the long-term oil recovery reduced the bacterial taxonomic- and functional-diversity, and increased the community co-occurrence associations in subsurface oil reservoirs. Moreover, distinguished from the perturbed samples, both variation partition analysis and structural equation model revealed that the contents of quartz, NO and Cl significantly structured the α- and β-diversity in indigenous subsurface bacterial communities. These findings first provide the holistic picture of microbiome in the deep oil reservoirs, which demonstrate the significant impact of human activity on microbiome in deep continental subsurface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.153564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!