Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones.

Sci Total Environ

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: May 2022

AI Article Synopsis

  • Hydrological gradient variations in wetlands directly influence carbon storage by affecting soil nutrients and plant diversity, although the underlying mechanisms are not fully understood.
  • The study found that high-frequency wet-dry alternating zones (HFWA) had significantly higher soil nutrient levels, plant biomass, and carbon content compared to low-frequency wet-dry alternating zones (LFWA).
  • A structural equation model showed that wet-dry alternations positively correlate with both soil nutrients and plant biomass, suggesting that better water management in wetlands can boost plant growth and enhance soil carbon sequestration.

Article Abstract

Hydrological gradient variations in wetlands have a vital impact on wetland carbon storage. However, the mechanisms by which hydrological gradient variations affect biomass and carbon storage by regulating the soil nutrient contents and plant diversity remain unclear. This study attempted to explore these influencing mechanisms by studying the relationships between hydrological gradient variations and carbon storage in wetlands. The results showed that the average nutrient content, plant biomass and soil carbon content values in the high-frequency wet-dry alternating zones (HFWA, zones where the frequency of water level occurs between -25 cm and 25 cm greater than 0.5) were 1.4 times, 2.3 times and 0.43 higher, respectively, than those in the low-frequency wet-dry alternating zones (LFWA, zones where the frequency of water level occurs between -25 cm and 25 cm less than 0.3). These results indicated that the HFWA zones had higher soil nutrients, higher plant dominance, higher biomass and higher soil carbon contents than the LFWA zones. The structural equation model revealed a significant positive correlation between wet-dry alternations and the soil nutrient-plant biomass-soil carbon relation in wetlands. Moreover, there was also a significant positive correlation between wet-dry alternations and the plant dominance-plant biomass-soil carbon relation in wetlands. This implied that the concentrated effect of HFWA on soil nutrients promotes plant growth, enhances plant dominance, promotes plant productivity, and enhances the capacities of plants to input carbon to the soil, thereby increasing the soil carbon content. This study closely linked wetland hydrological gradients, plant biodiversity and wetland carbon sequestration and profoundly revealed the mechanisms by which hydrological gradients in wetlands regulate the concentrations of nutrient elements, thereby affecting vegetation growth and carbon sequestration; these results could provide a new cognitive basis for understanding the coupling of carbon and water.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.153512DOI Listing

Publication Analysis

Top Keywords

carbon storage
16
carbon
13
soil nutrients
12
wet-dry alternating
12
alternating zones
12
hydrological gradient
12
gradient variations
12
soil carbon
12
soil
9
plant
9

Similar Publications

The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.

View Article and Find Full Text PDF

Understanding the phase structure evolution and charge storage mechanism of FeCoNi-MOFs as electrodes for asymmetric supercapacitors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:

Metal-organic frameworks (MOFs) due to abundant apertures, adjustable components, and multi-purpose structures have broad application prospects in supercapacitors. However, its low conductivity, poor stability, and difficulty growing evenly on the conductive substrate limit the electrochemical energy storage performance. Herein, with FeCoNi-OH nanosheets serving as the precursors, the trimetallic FeCoNi-MOF (FCNM) multilayer structure is successfully synthesized on activated carbon cloth (AC), and its optimal growth state (FCNM/AC-12 h) is achieved by regulating the reaction time.

View Article and Find Full Text PDF

Mechanically Robust Bismuth-Embedded Carbon Microspheres for Ultrafast Charging and Ultrastable Sodium-Ion Batteries.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China.

Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges.

View Article and Find Full Text PDF

Sodium-ion batteries (SIBs) offer several advantages over traditional lithium-ion batteries, including a more uniform sodium distribution, lower-cost materials, and safer transportation options. A promising development in SIBs is the use of hard carbons as anode materials due to their low insertion voltage and larger interlayer spacing, which improve sodium-ion insertion. Traditionally, hard carbons are made from costly carbon sources, but recent advancements have focussed on using abundant bio-waste, like coffee grounds.

View Article and Find Full Text PDF

Robust multi-read reconstruction from noisy clusters using deep neural network for DNA storage.

Comput Struct Biotechnol J

December 2024

Systems Biology Center, Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.

DNA holds immense potential as an emerging data storage medium. However, the recovery of information in DNA storage systems faces challenges posed by various errors, including IDS errors, strand breaks, and rearrangements, inevitably introduced during synthesis, amplification, sequencing, and storage processes. Sequence reconstruction, crucial for decoding, involves inferring the DNA reference from a cluster of erroneous copies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!