Targeting the ERK mitogen-activated protein kinase cascade for the treatment of KRAS-mutant pancreatic cancer.

Adv Cancer Res

Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Cell Biology and Physiology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States. Electronic address:

Published: March 2022

Mutational activation of the KRAS oncogene is found in ~95% of pancreatic ductal adenocarcinoma (PDAC), the major form of pancreatic cancer. With substantial experimental evidence that continued aberrant KRAS function is essential for the maintenance of PDAC tumorigenic growth, the National Cancer Institute has identified the development of effective anti-KRAS therapies as one of four major initiatives for pancreatic cancer research. The recent clinical success in the development of an anti-KRAS therapy targeting one specific KRAS mutant (G12C) supports the significant potential impact of anti-KRAS therapies. However, KRAS mutations comprise only 2% of KRAS mutations in PDAC. Thus, there remains a dire need for additional therapeutic approaches for targeting the majority of KRAS-mutant PDAC. Among the different directions currently being pursued for anti-KRAS drug development, one of the most promising involves inhibitors of the key KRAS effector pathway, the three-tiered RAF-MEK-ERK mitogen-activated protein kinase (MAPK) cascade. We address the promises and challenges of targeting ERK MAPK signaling as an anti-KRAS therapy for PDAC. In particular, we also summarize the key role of the MYC transcription factor and oncoprotein in supporting ERK-dependent growth of KRAS-mutant PDAC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.acr.2021.07.008DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
12
targeting erk
8
mitogen-activated protein
8
protein kinase
8
anti-kras therapies
8
anti-kras therapy
8
kras mutations
8
kras-mutant pdac
8
kras
6
pdac
6

Similar Publications

Background: Tumor size (TS) in pancreatic ductal adenocarcinoma (PDAC) is one of the most important prognostic factors. However, discrepancies between TS on preoperative images (TSi) and pathological specimens (TSp) have been reported. This study aims to evaluate the factors associated with the differences between TSi and TSp.

View Article and Find Full Text PDF

HIFU induces reprogramming of the tumor immune microenvironment in a pancreatic cancer mouse model.

Med Mol Morphol

January 2025

Faculty of Advanced Techno-Surgery (FATS), Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku, Tokyo, 162-8666, Japan.

This study evaluates the effects of different high-intensity focused ultrasound irradiation (HIFU) methods on local tumor suppression and systemic antitumor effects, including the abscopal effect, in a mouse model of pancreatic cancer. To ascertain the efficacy of the treatment, pancreatic cancer cells were injected into the thighs of mice and HIFU was applied on one side using continuous waves or trigger pulse waves. Then, tumor volume, tissue changes, and immune marker levels were analyzed.

View Article and Find Full Text PDF

The relationship between nanoliposomal irinotecan/fluorouracil/leucovorin (NFF) treatment outcomes and neutropenia in patients with pancreatic cancer has not been thoroughly examined. Thus, we conducted a retrospective analysis of data from patients with pancreatic cancer who were treated with NFF to investigate this relationship. Neutropenia was assessed according to the Common Terminology Criteria for Adverse Events across three cutoffs: A (grade 0 versus grade 1-4), B (grades 0-1 versus 2-4), and C (grades 0-2 versus 3-4).

View Article and Find Full Text PDF

To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrospective analysis was performed on a cohort of 266 patients, comprising 115 individuals diagnosed with PNETs and 151 with pancreatic cancer. These patients were randomly assigned to the training or test group in a 7:3 ratio.

View Article and Find Full Text PDF

Background: Most patients undergoing pancreaticoduodenectomy (PD) for pancreatic ductal adenocarcinoma (PDAC) develop recurrence. No previous studies have investigated predictors of local-only recurrence following PD for PDAC. Our study aimed to determine timing, pattern and predictors of any-site and local-only recurrence following PD for PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!