Background: Cell-based models are becoming increasingly popular for applications in developmental biology. However, the impact of numerical choices on the accuracy and efficiency of the simulation of these models is rarely meticulously tested. Without concrete studies to differentiate between solid model conclusions and numerical artifacts, modelers are at risk of being misled by their experiments' results. Most cell-based modeling frameworks offer a feature-rich environment, providing a wide range of biological components, but are less suitable for numerical studies. There is thus a need for software specifically targeted at this use case.
Results: We present CBMOS, a Python framework for the simulation of the center-based or cell-centered model. Contrary to other implementations, CBMOS' focus is on facilitating numerical study of center-based models by providing access to multiple ordinary differential equation solvers and force functions through a flexible, user-friendly interface and by enabling rapid testing through graphics processing unit (GPU) acceleration. We show-case its potential by illustrating two common workflows: (1) comparison of the numerical properties of two solvers within a Jupyter notebook and (2) measuring average wall times of both solvers on a high performance computing cluster. More specifically, we confirm that although for moderate accuracy levels the backward Euler method allows for larger time step sizes than the commonly used forward Euler method, its additional computational cost due to being an implicit method prohibits its use for practical test cases.
Conclusions: CBMOS is a flexible, easy-to-use Python implementation of the center-based model, exposing both basic model assumptions and numerical components to the user. It is available on GitHub and PyPI under an MIT license. CBMOS allows for fast prototyping on a central processing unit for small systems through the use of NumPy. Using CuPy on a GPU, cell populations of up to 10,000 cells can be simulated within a few seconds. As such, it will substantially lower the time investment for any modeler to check the crucial assumption that model conclusions are independent of numerical issues.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8805507 | PMC |
http://dx.doi.org/10.1186/s12859-022-04575-4 | DOI Listing |
iScience
January 2025
Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
Humans and animals excel at learning complex tasks through reward-based feedback, dynamically adjusting value expectations and choices based on past experiences to optimize outcomes. However, understanding the hidden cognitive components driving these behaviors remains challenging. Neuroscientists use the Temporal Difference (TD) learning model to estimate cognitive elements like value representation and prediction error during learning and decision-making processes.
View Article and Find Full Text PDFNat Chem
January 2025
Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, China.
The properties and functions of metal-organic frameworks (MOFs) can be tailored by tuning their structure, including their shape, porosity and topology. However, the design and synthesis of complex structures in a predictable manner remains challenging. Here we report the preparation of a series of isomeric pillar-layered MOFs, and we show that their three-dimensional topology can be controlled by altering the layer stacking.
View Article and Find Full Text PDFSci Data
January 2025
Duke Kunshan University, 8 Duke Avenue, Kunshan, Jiangsu, 215316, China.
Decentralized Finance (DeFi) is reshaping traditional finance by enabling direct transactions without intermediaries, creating a rich source of open financial data. Layer 2 (L2) solutions are emerging to enhance the scalability and efficiency of the DeFi ecosystem, surpassing Layer 1 (L1) systems. However, the impact of L2 solutions is still underexplored, mainly due to the lack of comprehensive transaction data indices for economic analysis.
View Article and Find Full Text PDFMethodsX
June 2025
National Advanced IPv6 Centre (Nav6), School of Computer Sciences, Universiti Sains Malaysia, 1800 Penang, Malaysia.
Slope instability represents a substantial secondary hazard post-earthquake, leading to considerable socio-economic losses from the destruction of structures, infrastructure, and human lives. This study addresses the urgent need for precise evaluation of seismic slope stability, a subject that has gained significant attention in earthquake engineering over the past decade. A theoretical framework is proposed that utilizes an improved Sarma method, estimating seismic forces and safety factors based on limit equilibrium theory.
View Article and Find Full Text PDFBiomedicines
December 2024
World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Street, 119991 Moscow, Russia.
Ischemic heart disease (IHD) impacts the quality of life and is the most frequently reported cause of morbidity and mortality globally. To assess the changes in the exhaled volatile organic compounds (VOCs) in patients with vs. without ischemic heart disease (IHD) confirmed by stress computed tomography myocardial perfusion (CTP) imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!