Purpose: To investigate the mechanism through which hyperthermia promotes exosome secretion and drug sensitivity in adriamycin-resistant breast cancer.
Materials And Methods: We first evaluated the effect of hyperthermia on adriamycin-resistant breast cancer viability and used transmission electron microscopy, nanoparticle tracking analysis, and a bicinchoninic acid kit to validate the effect of hyperthermia on exosome secretion. The effective targeting molecules and pathways changed by hyperthermia were explored by RNA microarray and verified . The adriamycin-resistant MCF-7/ADR cells co-incubated with the exosomes produced by MCF-7/ADR cells after hyperthermia were assessed. The uptake of exosomes by MCF-7/ADR cells after hyperthermia treatment was evaluated by confocal microscopy. Finally, the mechanism through which hyperthermia promotes exosome secretion by hyperthermia was determined.
Results: Hyperthermia significantly suppressed the growth of adriamycin-resistant breast cancer cells and increased drug sensitivity by upregulating FOS and CREB5, genes related to longer overall survival in breast cancer patients. Moreover, hyperthermia promoted exosome secretion through Rab7b, a small GTPase that controls endosome transport. The upregulated FOS and CREB5 antioncogenes can be transferred to MCF-7/ADR cells by hyperthermia-treated MCF-7/ADR cell-secreted exosomes.
Conclusions: Our results demonstrated a novel function of hyperthermia in promoting exosome secretion in adriamycin-resistant breast cancer cells and revealed the effects of hyperthermia on tumor cell biology. These hyperthermia-triggered exosomes can carry antitumor genes to the residual tumor and tumor microenvironment, which may be more beneficial to the effects of hyperthermia. These results represent an exploration of the relationship between therapeutic strategies and exosome biology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02656736.2022.2029585 | DOI Listing |
Inflammation
December 2024
Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
Endoplasmic reticulum stress (ERs) is implicated in antitumor immunity. However, the exact role of ERs in mediating the effects of dendritic cells (DCs) is not unclear. In this study, we explored the role of exosomes derived from ER-stressed hepatocellular carcinoma (HCC) cells in the antitumor effects of DCs and the precise underlying mechanism.
View Article and Find Full Text PDFReprod Domest Anim
December 2024
Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.
Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
Temporomandibular joint osteoarthritis (TMJOA) is a painful inflammatory condition that limits mouth opening. Cell-derived exosomes, which have anti-inflammatory effects, are emerging as a treatment for TMJOA. Injection of dental pulp stem cells (DPSCs), which secrete exosomes, can moderate tissue damage in a rat model of TMJOA.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
Introduction: Extracellular vesicles of Natural Killer cells (NKEV) exert an antitumor effect towards hematopoietic and solid tumors and have an immune modulating effect, suggesting a promising role in immune and biotherapy. In this study, a continuation of our former works, we demonstrated a network by mass spectrometry analysis between NKEV protein cargo and antitumor effects. Human healthy NKEV, both exosomes and microvesicles, have a significant and direct cytotoxic effect against human B cell lymphoma in and conditions.
View Article and Find Full Text PDFBiomater Res
December 2024
Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
Despite that the clinical application of titanium-based implants has achieved great success, patients' own diseases and/or unhealthy lifestyle habits often lead to implant failure. Many studies have been carried out to modify titanium implants to promote osseointegration and implant success. Recent studies showed that exosomes, proactively secreted extracellular vesicles by mammalian cells, could selectively target and modulate the functions of recipient cells such as macrophages, nerve cells, endothelial cells, and bone marrow mesenchymal stem cells that are closely involved in implant osseointegration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!