The new coronavirus 2 (SARS-CoV-2) is known to be also shed through feces, which makes wastewater-based surveillance possible, independent of symptomatic cases and unbiased by any testing strategies and frequencies. We investigated the entire population of the Principality of Liechtenstein with samples from the wastewater treatment plant Bendern (serving all 39,000 inhabitants). Twenty-four-hour composite samples were taken once or twice a week over a period of 6 months from September 2020 to March 2021. Viral RNA was concentrated using the PEG centrifugation method followed by reverse transcription quantitative PCR. The aim of this research was to assess the suitability of SARS-CoV-2 fragments to relate the viral wastewater signal to the incidences and assess the impact of the emerging B.1.1.7. variant. The viral load in the wastewater peaked at almost 9 × 10 viral fragments per person equivalent (PE) and day on October 25, and showed a second peak on December 22 reaching a viral load of approximately 2 × 10 PEd. Individual testing showed a lag of 4 days and a distinct underestimation of cases at the first peak when testing frequency was low. The wastewater signal showed an immediate response to the implementation of non-pharmaceutical interventions. The new virus variant B.1.1.7. was first detected in wastewater on December 23, while it was first observed with individual testing on January 13, 2021. Further, our data indicate that the emergence of new virus variant may change the wastewater signal, probably due to different shedding patterns, which should be considered in future models.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wh.2021.180DOI Listing

Publication Analysis

Top Keywords

wastewater signal
12
b117 variant
8
viral load
8
individual testing
8
virus variant
8
wastewater
7
viral
5
detection abundance
4
abundance sars-cov-2
4
sars-cov-2 wastewater
4

Similar Publications

Although wastewater-based epidemiology has been used extensively for the surveillance of viral diseases, it has not been used to a similar extent for bacterial diseases. This is in part owing to difficulties in distinguishing pathogenic from nonpathogenic bacteria using PCR methods. Here, we show that surface-enhanced Raman spectroscopy (SERS) can be a scalable, label-free method for the detection of bacteria in wastewater.

View Article and Find Full Text PDF

Deciphering intricate associations between vigorous development and novel metabolic preferences of partial denitrification/anammox granular consortia within mainstream municipal wastewater.

Bioresour Technol

January 2025

National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, PR China. Electronic address:

There is limited understanding of the granular partial denitrification/anammox (PD/A) microbiota and metabolic hierarchy specific to municipal wastewater treatment, particularly concerning the multi-mechanisms of functional differentiation and granulation tendencies under high-loading shocks. Therefore, this study utilized fragmented mature biofilm as the exclusive inoculum to rapidly establish a granular PD/A system. Following long-term feeding with municipal wastewater, PD/A process reached a total nitrogen removal efficiency of 97.

View Article and Find Full Text PDF

Combining metagenomic sequencing and molecular docking to understand signaling molecule degradation characteristics of quorum quenching consortia.

Environ Res

January 2025

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.

Quorum quenching consortia (QQC) enriched by special substrates for bioaugmentation is a promising QQ technology to reduce biofouling, sludge yield, and sludge bulking. However, the effect of substrate type on the performance of QQC is still a research gap. This study selected three different substrates, regular AHLs (N-octanoyl-l-homoserine lactone, C8), 3-oxo-AHLs (3-oxo-octanoyl)-l-homoserine lactone, 3-oxo-C8), and AHLs analogs (γ-caprolactone, GCL) to enrich three QQC (C8-QQC, 3OC8-QQC, GCL-QQC).

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!