A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stretching Artifacts Identification for Quality Assessment of 3D-Synthesized Views. | LitMetric

AI Article Synopsis

  • Existing Quality Assessment (QA) algorithms struggle to identify stretching artifacts in 3D-synthesized views, as they are outdated and mainly focused on "black-holes," which are now less relevant due to advanced rendering techniques.
  • The researchers discovered a link between the amount of stretching artifacts and the overall perceptual quality of the images, leading to the development of a CNN-based algorithm to detect these artifacts.
  • To improve the algorithm's effectiveness, they augmented the training dataset by gathering images from related sources, resulting in better performance in assessing 3D-synthesized views compared to current algorithms.

Article Abstract

Existing Quality Assessment (QA) algorithms consider identifying "black-holes" to assess perceptual quality of 3D-synthesized views. However, advancements in rendering and inpainting techniques have made black-hole artifacts near obsolete. Further, 3D-synthesized views frequently suffer from stretching artifacts due to occlusion that in turn affect perceptual quality. Existing QA algorithms are found to be inefficient in identifying these artifacts, as has been seen by their performance on the IETR dataset. We found, empirically, that there is a relationship between the number of blocks with stretching artifacts in view and the overall perceptual quality. Building on this observation, we propose a Convolutional Neural Network (CNN) based algorithm that identifies the blocks with stretching artifacts and incorporates the number of blocks with the stretching artifacts to predict the quality of 3D-synthesized views. To address the challenge with existing 3D-synthesized views dataset, which has few samples, we collect images from other related datasets to increase the sample size and increase generalization while training our proposed CNN-based algorithm. The proposed algorithm identifies blocks with stretching distortions and subsequently fuses them to predict perceptual quality without reference, achieving improvement in performance compared to existing no-reference QA algorithms that are not trained on the IETR dataset. The proposed algorithm can also identify the blocks with stretching artifacts efficiently, which can further be used in downstream applications to improve the quality of 3D views. Our source code is available online: https://github.com/sadbhawnathakur/3D-Image-Quality-Assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3145997DOI Listing

Publication Analysis

Top Keywords

stretching artifacts
24
3d-synthesized views
20
blocks stretching
20
perceptual quality
16
quality
8
quality assessment
8
quality 3d-synthesized
8
ietr dataset
8
number blocks
8
algorithm identifies
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!