Limited-angle CT is a challenging problem in real applications. Incomplete projection data will lead to severe artifacts and distortions in reconstruction images. To tackle this problem, we propose a novel reconstruction framework termed Deep Iterative Optimization-based Residual-learning (DIOR) for limited-angle CT. Instead of directly deploying the regularization term on image space, the DIOR combines iterative optimization and deep learning based on the residual domain, significantly improving the convergence property and generalization ability. Specifically, the asymmetric convolutional modules are adopted to strengthen the feature extraction capacity in smooth regions for deep priors. Besides, in our DIOR method, the information contained in low-frequency and high-frequency components is also evaluated by perceptual loss to improve the performance in tissue preservation. Both simulated and clinical datasets are performed to validate the performance of DIOR. Compared with existing competitive algorithms, quantitative and qualitative results show that the proposed method brings a promising improvement in artifact removal, detail restoration and edge preservation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2022.3148110 | DOI Listing |
Math Biosci Eng
December 2024
Department of Electronics and Communication Engineering, Akshaya College of Engineering and Technology, Coimbatore, Tamil Nadu, India.
The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2025
Advanced Medical Devices Laboratory, Kyushu University, Nishi-ku, Fukuoka, 819-0382, Japan.
Purpose: This paper presents a deep learning approach to recognize and predict surgical activity in robot-assisted minimally invasive surgery (RAMIS). Our primary objective is to deploy the developed model for implementing a real-time surgical risk monitoring system within the realm of RAMIS.
Methods: We propose a modified Transformer model with the architecture comprising no positional encoding, 5 fully connected layers, 1 encoder, and 3 decoders.
Med Image Anal
January 2025
Nuffield Department of Medicine, University of Oxford, Oxford, UK; Department of Engineering Science, University of Oxford, Oxford, UK; Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; Oxford National Institute for Health Research (NIHR) Biomedical Research Centre, Oxford, UK. Electronic address:
Predicting disease-related molecular traits from histomorphology brings great opportunities for precision medicine. Despite the rich information present in histopathological images, extracting fine-grained molecular features from standard whole slide images (WSI) is non-trivial. The task is further complicated by the lack of annotations for subtyping and contextual histomorphological features that might span multiple scales.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy.
Background: Boron neutron capture therapy (BNCT) is an innovative binary form of radiation therapy with high selectivity towards cancer tissue based on the neutron capture reaction B(n,α)Li, consisting in the exposition of patients to neutron beams after administration of a boron compound with preferential accumulation in cancer cells. The high linear energy transfer products of the ensuing reaction deposit their energy at the cell level, sparing normal tissue. Although progress in accelerator-based BNCT has led to renewed interest in this cancer treatment modality, in vivo dose monitoring during treatment still remains not feasible and several approaches are under investigation.
View Article and Find Full Text PDFMed Image Anal
January 2025
Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!