Lysosomes function not only as degradatory compartments but also as dynamic intracellular calcium ion stores. The transient receptor potential mucolipin 1 (TRPML1) channel mediates lysosomal Ca release, thereby participating in multiple cellular functions. The pentameric Ragulator complex, which plays a critical role in the activation of mTORC1, is also involved in lysosomal trafficking and is anchored to lysosomes through its LAMTOR1 subunit. Here, we report that the Ragulator restricts lysosomal trafficking in dendrites of hippocampal neurons via LAMTOR1-mediated tonic inhibition of TRPML1 activity, independently of mTORC1. LAMTOR1 directly interacts with TRPML1 through its N-terminal domain. Eliminating this inhibition in hippocampal neurons by LAMTOR1 deletion or by disrupting LAMTOR1-TRPML1 binding increases TRPML1-mediated Ca release and facilitates dendritic lysosomal trafficking powered by dynein. LAMTOR1 deletion in the hippocampal CA1 region of adult mice results in alterations in synaptic plasticity, and in impaired object-recognition memory and contextual fear conditioning, due to TRPML1 activation. Mechanistically, changes in synaptic plasticity are associated with increased GluA1 dephosphorylation by calcineurin and lysosomal degradation. Thus, LAMTOR1-mediated inhibition of TRPML1 is critical for regulating dendritic lysosomal motility, synaptic plasticity, and learning.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8886530 | PMC |
http://dx.doi.org/10.15252/embj.2021108119 | DOI Listing |
PLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFBBA Adv
December 2024
Genos Glycoscience Research Laboratory, Zagreb, Croatia.
Asparagine-linked glycosylation (N-glycosylation) is a common co- and post-translational modification that refers to the addition of complex carbohydrates, called N-linked glycans (N-glycans), to asparagine residues within defined sequons of polypeptide acceptors. Some N-glycans can be modified by the addition of phosphate moieties to their monosaccharide residues, thus forming phospho-N-glycans (PNGs). The most prominent such carbohydrate modification is mannose-6-phosphate (M6P) which plays a well-established role in trafficking of acid hydrolases to lysosomes.
View Article and Find Full Text PDFAutophagy
January 2025
Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada.
The multi-step macroautophagy/autophagy process ends with the cargo-laden autophagosome fusing with the lysosome to deliver the materials to be degraded. The metazoan-specific autophagy factor EPG5 plays a crucial role in this step by enforcing fusion specificity and preventing mistargeting. How EPG5 exerts its critical function and how its deficiency leads to diverse phenotypes of the rare multi-system disorder Vici syndrome are not fully understood.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Department of Molecular and Cellular Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
Functionally derivatized analogs of prenyl lipids are valuable tools for the detection and analysis of prenylated proteins. Using a biotinylated analog of geranylgeranyl, we previously identified Ykt6 as a substrate for a novel protein prenyltransferase, termed geranylgeranyltransferase type III (GGTase-III). Ykt6 is an evolutionarily highly conserved SNARE protein that regulates multiple intracellular trafficking pathways, including intra-Golgi trafficking and autophagosome-lysosome fusion.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Chemical and Biological Engineering Department, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Inefficient endosomal escape has been regarded as the main bottleneck for intracellular nucleic acid delivery. While most research efforts have been spent on designing various nano-sized particles, we took a different path here, investigating micron-sized carriers for direct cytosol entry. Using the spontaneous co-assembly of mRNA and the designer 27 amino acid oligopeptide named pepMAX2, micron-sized co-assemblies were obtained with various sizes by altering the concentration of NaCl salt and time for pre-incubation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!