Purpose: Reconstructive surgeries to treat a number of musculoskeletal conditions, from arthritis to severe trauma, involve implant placement and reconstructive planning components. Anatomically matched 3D-printed implants are becoming increasingly patient-specific; however, the preoperative planning and design process requires several hours of manual effort from highly trained engineers and clinicians. Our work mitigates this problem by proposing algorithms for the automatic re-alignment of unhealthy anatomies, leading to more efficient, affordable, and scalable treatment solutions.
Methods: Our solution combines global alignment techniques such as iterative closest points with novel joint space refinement algorithms. The latter is achieved by a low-dimensional characterization of the joint space, computed from the distribution of the distance between adjacent points in a joint.
Results: Experimental validation is presented on real clinical data from human subjects. Compared with ground truth healthy anatomies, our algorithms can reduce misalignment errors by 22% in translation and 19% in rotation for the full foot-and-ankle and 37% in translation and 39% in rotation for the hindfoot only, achieving a performance comparable to expert technicians.
Conclusion: Our methods and histogram-based metric allow for automatic and unsupervised alignment of anatomies along with techniques for global alignment of complex arrangements such as the foot-and-ankle system, a major step toward a fully automated and data-driven re-positioning, designing, and diagnosing tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-021-02548-1 | DOI Listing |
Technology-facilitated abuse (TFA) describes the misuse or repurposing of digital systems to harass, coerce, or abuse. It is a global problem involving both existing and emerging technologies. Despite significant work across research, policy, and practice to understand the issue, the field operates within linguistic, conceptual, and disciplinary silos, inhibiting collaboration.
View Article and Find Full Text PDFEur Spine J
January 2025
College of Medicine, QU Health, Qatar University, Doha, Qatar.
Purpose: Disruptions in global sagittal spinal alignment can lead to changes in global sagittal spinal alignment, often manifesting as sagittal malalignment, where the trunk shifts forward. We proposed that these alignment changes are linked to degenerative lumbar spondylolisthesis (DS). The objective was to assess global spinal alignment in low-grade DS using sagittal vertical axis (SVA) classification.
View Article and Find Full Text PDFSci Rep
January 2025
School of International Relations, Yonsei University, Seoul, 03722, Republic of Korea.
Climate change and environmental degradation are critical global challenges, and the G-20 nations play a pivotal role in addressing these issues due to their substantial contributions to global GDP and carbon emissions. Transitioning toward renewable energy sources is imperative for mitigating CO2 emissions and achieving sustainable development. This study investigates the impact of technological innovation, gross domestic product (GDP), renewable energy consumption, economic freedom, and financial advancement on renewable energy use and environmental pollution levels in G-20 countries from 1995 to 2022.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Neonatology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands.
Background: This study aims to outline sleep strategies grounded in scientific research and endorsed by sleep experts, integrating parental input into the evaluation process, to assist parents in supporting infant sleep after discharge from a neonatal ward.
Methods: A Delphi method, consisting of three rounds, was employed. Sleep strategies based on scientific literature were presented to sleep experts and parents of infants discharged from a neonatal ward.
ACS Nano
January 2025
Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Understanding energy transport in semiconductors is critical for the design of electronic and optoelectronic devices. Semiconductor material properties, such as charge carrier mobility or diffusion length, are commonly measured in bulk crystals and determined using models that describe transport behavior in homogeneous media, where structural boundary effects are minimal. However, most emerging semiconductors exhibit nano- and microscale heterogeneity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!