Background: We assessed the difference in lung motion during inspiration/expiration between chronic obstructive pulmonary disease (COPD) patients and healthy volunteers using vector-field dynamic x-ray (VF-DXR) with optical flow method (OFM).
Methods: We enrolled 36 COPD patients and 47 healthy volunteers, classified according to pulmonary function into: normal, COPD mild, and COPD severe. Contrast gradient was obtained from sequential dynamic x-ray (DXR) and converted to motion vector using OFM. VF-DXR images were created by projection of the vertical component of lung motion vectors onto DXR images. The maximum magnitude of lung motion vectors in tidal inspiration/expiration, forced inspiration/expiration were selected and defined as lung motion velocity (LMV). Correlations between LMV with demographics and pulmonary function and differences in LMV between COPD patients and healthy volunteers were investigated.
Results: Negative correlations were confirmed between LMV and % forced expiratory volume in one second (%FEV) in the tidal inspiration in the right lung (Spearman's rank correlation coefficient, r = -0.47, p < 0.001) and the left lung (r = -0.32, p = 0.033). A positive correlation between LMV and %FEV in the tidal expiration was observed only in the right lung (r = 0.25, p = 0.024). LMVs among normal, COPD mild and COPD severe groups were different in the tidal respiration. COPD mild group showed a significantly larger magnitude of LMV compared with the normal group.
Conclusions: In the tidal inspiration, the lung parenchyma moved faster in COPD patients compared with healthy volunteers. VF-DXR was feasible for the assessment of lung parenchyma using LMV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802288 | PMC |
http://dx.doi.org/10.1186/s41747-021-00254-w | DOI Listing |
J Biomed Phys Eng
December 2024
Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
Background: Coronary heart disease the most prevalent form of cardiovascular disease, results from the blockage of blood flow through arteries. The Myocardial Perfusion Scan (MPS) is considered a non-invasive method to assess the heart condition and provides valuable information, such as End Diastolic Volume (EDV), End Systolic Volume (ESV), Ejection Fraction (EF), Lung to Heart Ratio (LHR), and Transient Ischemic Dilatation (TID).
Objective: This study aimed to investigate changes in gated heart scan parameters to diagnose patients, who are candidates for heart surgery.
Adv Radiat Oncol
February 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah.
Purpose: To evaluate the image quality of an ultrafast cone-beam computed tomography (CBCT) system-Varian HyperSight.
Methods And Materials: In this evaluation, 5 studies were performed to assess the image quality of HyperSight CBCT. First, a HyperSight CBCT image quality evaluation was performed and compared with Siemens simulation-CT and Varian TrueBeam CBCT.
Phys Imaging Radiat Oncol
October 2024
Department of Radiation Oncology, Hospital Clínic, Barcelona Spain.
Introduction: Treatment of neoplasic lung nodules with ground glass opacities (GGO) faces two primary challenges. First, the standard practice of treating GGOs as solid nodules, which effectively controls the tumor locally, but might increase associated toxicities. The second is the potential for dose calculation errors related to increased heterogeneity.
View Article and Find Full Text PDFMed Phys
December 2024
Image X Institute, University of Sydney, Sydney, New South Wales, Australia.
Background: STereotactic Arrhythmia Radioablation (STAR) is a novel noninvasive method for treating arrythmias in which external beam radiation is directed towards subregions of the heart. Challenges for accurate STAR targeting include small target volumes and relatively large patient motion, which can lead to radiation related patient toxicities. 4D Cone-beam CT (CBCT) images are used for stereotactic lung treatments to account for respiration-related patient motion.
View Article and Find Full Text PDFBMC Med Imaging
December 2024
Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Background: Diffusion-weighted imaging (DWI) can be used for quantitative tumor assessment. DWI with different models may show different aspects of tissue characteristics.
Objective: To investigate the diagnostic performance of parameters derived from monoexponential, biexponential, stretched exponential magnetic resonance diffusion weighted imaging (DWI) and diffusion kurtosis imaging (DKI) in differentiating benign from malignant solitary pulmonary lesions (SPLs).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!