For the analysis of low concentrations of micropollutants in environmental water samples, efficient sample enrichment and cleanup are necessary to reduce matrix effects and to reach low detection limits. For analytes of low and medium polarity, solid-phase extraction is used, but robust methods for the preconcentration of highly polar or ionizable analytes are scarce. In this work, field-step electrophoresis (FSE) was developed as an environmental sample cleanup technique for ionizable micropollutants and ionic transformation products. The FSE electrolyte system preconcentrated 15 acidic model analytes (pK from -2.2 to 9.1) present in aqueous samples in two fractions by factors of 5-10. Simultaneously, highly mobile matrix compounds were removed including inorganic ions such as sulfate and chloride. The fractions were either directly injected for downstream analysis by reversed-phase liquid chromatography (RPLC) or further processed by evaporative preconcentration with subsequent reconstitution in an organic solvent suitable for separation methods like hydrophilic interaction chromatography. The FSE/RPLC-MS method exhibited high quantitative precision with RSDs of 3-6%. The method was successfully applied to a spiked river water sample and its performance compared with common solid-phase extraction and evaporative concentration, demonstrating a high analyte coverage. FSE combined with non-target screening by RPLC-MS revealed a strong reduction in matrix load especially at low retention times. Seventeen compounds were identified in the FSE fractions sampled at the field step boundary by retention time, accurate mass, and mass fragments. Suspect screening by FSE/RPLC-MS was facilitated by FSE's selectivity for anionic compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821473PMC
http://dx.doi.org/10.1007/s00216-021-03856-wDOI Listing

Publication Analysis

Top Keywords

field-step electrophoresis
8
environmental water
8
water samples
8
solid-phase extraction
8
performance free-flow
4
free-flow field-step
4
electrophoresis cleanup
4
cleanup step
4
step non-target
4
non-target analysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!