Background: Previous studies have reported the efficacy of human mesenchymal stem cell (MSC) exosomes for the repair of osteochondral defects in rats and rabbits. However, the safety and efficacy of MSC exosomes remain to be validated in a clinically relevant large animal model.

Purpose: To validate the safety and efficacy of human MSC exosomes for osteochondral repair in a clinically relevant micropig model.

Study Design: Controlled laboratory study.

Methods: Bilateral osteochondral defects (6-mm diameter and 1-mm depth) were surgically created in the medial femoral condyles in knees of 12 micropigs. The pigs then received 2-mL intra-articular injections of MSC exosomes and hyaluronic acid (HA) (Exosome+HA) or HA alone after surgery and thereafter at 8 and 15 days. Osteochondral repair was assessed by magnetic resonance imaging (MRI) at 15 days and at 2 and 4 months after surgery as well as by macroscopic, histological, biomechanical, and micro-computed tomography (micro-CT) analyses at 4 months after surgery.

Results: Exosome+HA-treated defects demonstrated significantly better MRI scores than HA-treated defects at 15 days and at 2 and 4 months. Additionally, Exosome+HA-treated defects demonstrated functional cartilage and subchondral bone repair, with significantly better macroscopic and histological scores and biomechanical properties (Young modulus and stiffness) than HA-treated defects at 4 months. Micro-CT further showed significantly higher bone volume and trabecular thickness in the subchondral bone of Exosome+HA-treated defects than that of HA-treated defects. Importantly, no adverse response or major systemic alteration was observed in any of the animals.

Conclusion: This study shows that the combination of MSC exosomes and HA administered at a clinically acceptable frequency of 3 weekly intra-articular injections can promote functional cartilage and subchondral bone repair, with significantly improved morphological, histological, and biomechanical outcomes in a clinically relevant porcine model.

Clinical Relevance: Our findings provide a robust scientific rationale to support a phase 1/2 clinical trial to test MSC exosomes in patients with osteochondral lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1177/03635465211068129DOI Listing

Publication Analysis

Top Keywords

msc exosomes
24
clinically relevant
16
osteochondral repair
12
exosome+ha-treated defects
12
ha-treated defects
12
subchondral bone
12
mesenchymal stem
8
stem cell
8
promote functional
8
repair clinically
8

Similar Publications

Mesenchymal stem cell therapy as a game-changer in liver diseases: review of current clinical trials.

Stem Cell Res Ther

January 2025

School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 10F., Teaching & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., Taipei, 235, Taiwan.

Chronic liver diseases, including cirrhosis and liver failure, remain formidable challenges due to their complex progression and limited therapeutic options. Mesenchymal stem cell (MSC) therapy has emerged as a game-changing approach, leveraging its potent immunomodulatory, anti-fibrotic, and regenerative capabilities, along with the ability to transdifferentiate into hepatocytes. This review delves into the latest advances in MSC-based treatments for chronic and end-stage liver diseases, as highlighted in current clinical trials.

View Article and Find Full Text PDF

The high failure rate of surgical repair for tendinopathies has spurred interest in adjunct therapies, including exosomes (EVs). Mesenchymal stromal cell (MSC)-derived EVs (MSCdEVs) have been of particular interest as they improve several metrics of tendon healing in animal models. However, research has shown that EVs derived from tissue-native cells, such as tenocytes, are functionally distinct and may better direct tendon healing.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) show significant promise in treating immune diseases due to their ability to differentiate into various cell types and their immunomodulatory properties. However, the mechanisms by which MSCs regulate CD4T cells, essential for immune responses, are not yet fully understood. This study aims to provide a comprehensive overview of how MSCs and their secreted extracellular vesicles (EVs) modulate CD4T cells in immune diseases.

View Article and Find Full Text PDF

Exosomes, a subclass of Extracellular Vesicles (EVs), are pivotal mediators of intercellular communication. Exosomes derived from Mesenchymal Stem Cells (MSCs) exhibit anti-inflammatory and immunomodulatory activities similar to that of their parental cells, which makes them a cell-free treatment strategy against Ulcerative Colitis (UC). Engineered MSC Exosomes (MSC-Exos) hold the potential to impart multifunctionality to MSCs and optimize their therapeutic effectiveness.

View Article and Find Full Text PDF

Hydrogel-integrated exosome mimetics derived from osteogenically induced mesenchymal stem cells in spheroid culture enhance bone regeneration.

Biomaterials

January 2025

Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA. Electronic address:

Exosomes derived from mesenchymal stem cells (MSCs) offer a promising alternative to traditional cell-based therapies for tissue repair by mitigating risks associated with the transplantation of living cells. However, insufficient osteogenic capacity of exosomes diminishes their potential in bone tissue regeneration. Here, we report novel osteogenically induced exosome mimetics (EMs) integrated into injectable hydrogel carriers for improved bone regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!