Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb), remains a leading infectious disease-related cause of death worldwide, necessitating the development of new and improved treatment regimens. Nonclinical evaluation of candidate drug combinations via the relapsing mouse model (RMM) is an important step in regimen development, through which candidate regimens that provide the greatest decrease in the probability of relapse following treatment in mice may be identified for further development. Although RMM studies are a critical tool to evaluate regimen efficacy, making comprehensive "apples to apples" comparisons of regimen performance in the RMM has been a challenge in large part due to the need to evaluate and adjust for variability across studies arising from differences in design and execution. To address this knowledge gap, we performed a model-based meta-analysis on data for 17 unique regimens obtained from a total of 1592 mice across 28 RMM studies. Specifically, a mixed-effects logistic regression model was developed that described the treatment duration-dependent probability of relapse for each regimen and identified relevant covariates contributing to interstudy variability. Using the model, covariate-normalized metrics of interest, namely, treatment duration required to reach 50% and 10% relapse probability, were derived and used to compare relative regimen performance. Overall, the model-based meta-analysis approach presented herein enabled cross-study comparison of efficacy in the RMM and provided a framework whereby data from emerging studies may be analyzed in the context of historical data to aid in selecting candidate drug combinations for clinical evaluation as TB drug regimens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8923195 | PMC |
http://dx.doi.org/10.1128/AAC.01793-21 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!