Previous research on feature binding in visual working memory has supported a privileged role for location in binding an object's nonspatial features. However, humans are able to correctly recall feature conjunctions of objects that occupy the same location at different times. In a series of behavioral experiments, we investigated binding errors under these conditions, and specifically tested whether ordinal position can take the role of location in mediating feature binding. We performed two dual report experiments in which participants had to memorize three colored shapes presented sequentially at the screen center. When participants were cued with the ordinal position of one item and had to report its shape and color, report errors for the two features were largely uncorrelated. In contrast, when participants were cued, for example, with an item's shape and reported an incorrect ordinal position, they had a high chance of making a corresponding error in the color report. This pattern of error correlations closely matched the predictions of a model in which color and shape are bound to each other only indirectly via an item's ordinal position. In a third experiment, we directly compared the roles of location and sequential position in feature binding. Participants viewed a sequence of colored disks displayed at different locations and were cued either by a disk's location or its ordinal position to report its remaining properties. The pattern of errors supported a mixed strategy with individual variation, suggesting that binding via either time or space could be used for this task. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614141 | PMC |
http://dx.doi.org/10.1037/rev0000331 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!