Monitoring brain activity is a novel development for hazard recognition in the construction industry. However, very few empirical studies have investigated the causal connections within the brain. This study aimed to explore the brain connectivity of construction workers during hazard recognition. Electroencephalogram data were collected from construction workers to perform image-based hazard recognition tasks. The Granger causality-based adaptive directed transfer function was used to simulate directed and time-variant information flow across the observed brain activity from the perspective of cognitive psychology. The results suggested a top-down modulation of behavioral goals originating from the dorsal attention network during hazard relocation. The sensory cortex predominantly serves as the information outlet center and interacts extensively with the frontal and visual cortices, reflecting a top-down attention reorientation mechanism for processing threatening stimuli. Our findings of brain effective connectivity supplement new evidence underpinning parallel distributed processing theory for workplace hazard recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10803548.2022.2035966DOI Listing

Publication Analysis

Top Keywords

hazard recognition
20
brain connectivity
8
cognitive psychology
8
brain activity
8
construction workers
8
brain
6
hazard
6
recognition
5
exploring construction
4
construction workers'
4

Similar Publications

Geohazard Identification in Underground Mines: A Mobile App.

Sensors (Basel)

December 2024

Department of Mining and Geological Engineering, University of Arizona, Tucson, AZ 8572, USA.

Mining is a critical industry that provides essential minerals and resources for modern society. Despite its benefits, the industry is also recognized as one of the most dangerous occupations, with geotechnical hazards being a primary concern. This study introduces the hazard recognition in underground mines application (HUMApp), a mobile application developed to enhance safety within underground mines by efficiently identifying geotechnical hazards, specifically focusing on roof falls.

View Article and Find Full Text PDF

DNAzyme-mediated isothermal catalytic hairpin assembly for rapid and enzyme-free amplified detection of lead(Ⅱ) ion.

J Hazard Mater

January 2025

Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306,  China; Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The detection of heavy metal ions, particularly lead (Pb²⁺), in environmental samples is crucial for public health and safety. Current nucleic acid signal amplification methods for Pb²⁺ detection often rely on biological enzymes and are limited in applicability due to high costs, prolonged detection times, and nonspecific adsorption. In this study, we introduce an enzyme-free, DNAzyme-mediated isothermal catalytic hairpin assembly (DMICHA) assay, which combines a DNAzyme-based Pb²⁺ recognition module with a signal amplification process utilizing isothermal catalytic hairpin assembly (CHA).

View Article and Find Full Text PDF

Potential bacterial resources for bioremediation of organochlorine pesticides and flame retardants recognized from forest soil across China.

J Hazard Mater

December 2024

The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou, Guangdong 510006, PR China.

Microbe-mediated remediation becomes a desire method for removal of persistent organic pollutants (POPs) due to its eco-friendly and sustainable nature. The improvement of practical feasibility requires constructing comprehensive species pool, while it is still limited by the rapid recognition of potential bacterial resources from environment. Here, based on the relative abundances of bacterial OTUs and pollutant concentrations, we established indexes to assess their tolerance to organochlorine pesticides (OCPs) and flame retardants (FRs) that are atmospheric transported and naturally accumulated in forest soil via forest filter effect.

View Article and Find Full Text PDF

Objectives: Although patient safety has received a lot of emphasis in medicine and nursing, data regarding patient safety perception in dentistry are limited, particularly among dental students. Given the increasing risk of safety hazards, curriculum developers need evidence to guide their implementation in undergraduate studies. This study aimed to determine patient safety culture among undergraduate dental students in Pakistan.

View Article and Find Full Text PDF

Ratiometric fluorescent probe and smartphone-based visual recognition for HO and organophosphorus pesticide based on Ce/Ce cascade enzyme reaction.

Food Chem

December 2024

Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:

Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!