The role of telomerase reverse transcriptase (TERT) induction and telomere maintenance in carcinogenesis including cervical cancer (CC) pathogenesis has been well established. However, it remains unclear whether they affect infection of high-risk human papillomavirus (hrHPV), an initiating event for CC development. Similarly, genetic variants at the TERT locus are shown to be associated with susceptibility to CC, but it is unclear whether these SNPs modify the risk for cervical HPV infection. Here we show that in CC-derived HeLa cells, TERT overexpression inhibits, while its depletion upregulates expression of Syndecan-1 (SDC-1), a key component for HPV entry receptors. The TCGA cohort of CC analyses reveals an inverse correlation between TERT and SDC-1 expression (R = -0.23, P = 0.001). We further recruited 1330 females (520 non-HPV and 810 hrHPV-infected) without CC or high-grade cervical intraepithelial neoplasia to analyze telomeres in cervical epithelial cells and SNPs at rs2736098, rs2736100 and rs2736108, previously identified TERT SNPs for CC risk. Non-infected females exhibited age-related telomere shortening in cervical epithelial cells and their telomeres were significantly longer than those in hrHPV-infected group (1.31 ± 0.62 vs 1.19 ± 0.48, P < 0.001). There were no differences in rs2736098 and rs2736100 genotypes, but non-infected individuals had significantly a higher C-allele frequency (associated with higher TERT expression) while lower T-allele levels at rs2736108 compared with those in the hrHPV group (P = 0.020). Collectively, appropriate telomere maintenance and TERT expression in normal cervical cells may prevent CC by modulating hrHPV infection predisposition, although they are required for CC development and progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11072999 | PMC |
http://dx.doi.org/10.1007/s00018-021-04113-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!