The optical manipulation of nanoscale objects via structured light has attracted significant attention for its various applications, as well as for its fundamental physics. In such cases, the detailed behavior of nano-objects driven by optical forces must be precisely predicted and controlled, despite the thermal fluctuation of small particles in liquids. In this study, the optical forces of an optical vortex acting on gold nanoparticles (Au NPs) are visualized using dark-field microscopic observations in a nanofluidic channel with strictly suppressed forced convection. Manipulating Au NPs with an optical vortex allows the evaluation of the three optical force components, namely, gradient, scattering, and absorption forces, from the in-plane trajectory. We develop a Langevin dynamics simulation model coupled with Rayleigh scattering theory and compare the theoretical results with the experimental ones. Experimental results using Au NPs with diameters of 80-150 nm indicate that our experimental method can determine the radial trapping stiffness and tangential force with accuracies on the order of 0.1 fN/nm and 1 fN, respectively. Our experimental method will contribute to broadening not only applications of the optical-vortex manipulation of nano-objects, but also investigations of optical properties on unknown nanoscale materials via optical force analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8792943PMC
http://dx.doi.org/10.1021/acsomega.1c04855DOI Listing

Publication Analysis

Top Keywords

optical vortex
12
optical
8
optical forces
8
optical force
8
experimental method
8
visualization optical
4
forces
4
vortex forces
4
forces acting
4
acting nanoparticles
4

Similar Publications

Vortex beams are currently drawing a great deal of interest, from fundamental research to several promising applications. While their generation in bulky optical devices limits their use in integrated complex systems, metasurfaces have recently proven successful in creating optical vortices, especially in the linear regime. In the nonlinear domain, of strategic importance for the future of classical and quantum information, to date orbital angular momentum has only been created in qualitative ways, without discussing discrepancies between design and experimental results.

View Article and Find Full Text PDF

Optical misalignment between transmitter and receiver leads to power loss and mode crosstalk in a mode division multiplexing (MDM) free-space optical (FSO) link. We report both numerical simulations and experimental results on the propagation performance of two typical vector beams, C-point polarization full Poincaré beams (FPB), and V-point polarization cylindrical vector beams (CVB), compared to homogeneous polarization scalar vortex beams (SVB) under optical misalignment. The FSO communication performance under misalignment using different transmit beams is evaluated in terms of power loss, mode crosstalk, power penalty, etc.

View Article and Find Full Text PDF

Purpose: To describe a technique involving combined endothelialectomy and trypan blue staining to allow for improved visualization and Descemet membrane (DM) removal during endothelial keratoplasty.

Methods: Endothelialectomy with 2 disposable endothelial irrigating cannulas (Vortex and Sterimedix) and an irrigation-aspiration handpiece are described. Several passes over the desired area are made to ensure adequate endothelialectomy treatment.

View Article and Find Full Text PDF

We realize a Laughlin state of two rapidly rotating fermionic atoms in an optical tweezer. By utilizing a single atom and spin resolved imaging technique, we sample the Laughlin wave function thereby revealing its distinctive features, including a vortex distribution in the relative motion, correlations in the particles' relative angle, and suppression of the interparticle interactions. Our Letter lays the foundation for atom-by-atom assembly of fractional quantum Hall states in rotating atomic gases.

View Article and Find Full Text PDF

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!