Biofloc technology (BFT) is gaining traction as a strategic aquaculture tool for boosting feed conversions, biosecurity, and wastewater recycling. The significant aspect of BFT is aquaculture with highest stocking density and minimal water exchange. It not only improves the water quality of a system by removing inorganic nitrogen from wastewater but also serves as a suitable feed supplement and probiotic source for cultured species. This technology is commonly used for shrimp and tilapia culture and can be used for both semi-intensive and intensive culture systems. Biofloc, when combined with formulated diets, forms a balanced food chain that improves growth performance. Nutrients in this system are continuously recycled and reused and form an efficient alternative system in aquaculture. In addition to the reduction in water exchange, it is also considered as a bio-security measure, since it prevents entry of disease from outside sources. Aquamimicry is an innovative concept that simulates natural estuarine conditions by developing copepods that act as supplementary nutrition especially for shrimp culture. The review highlights the process, significance, and development of BFT, its microbial interactions, nutritional value, transition from biofloc to copefloc, and concept of aquamimicry to sustainably improve aquaculture production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790604PMC
http://dx.doi.org/10.3389/fnut.2021.791738DOI Listing

Publication Analysis

Top Keywords

biofloc technology
8
water exchange
8
aquaculture
5
solution sustainable
4
sustainable utilization
4
utilization aquaculture
4
aquaculture waste
4
waste comprehensive
4
comprehensive review
4
biofloc
4

Similar Publications

The toxicity of nitrite is an issue that cannot be overlooked in nitrogen pollution within aquaculture. A highly efficient bacterium capable of simultaneous nitrification and denitrification was screened from natto, and its 16S rRNA gene sequence was compared to existing records, confirming its identification as Bacillus subtilis sp. N4.

View Article and Find Full Text PDF

Nano-TiO impairs the health of crabs Charybdis japonica under warming conditions through waterborne and dietary exposures.

J Hazard Mater

January 2025

International Research Center for Marine Biosciences, Shanghai Ocean University, Ministry of Science and Technology, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China. Electronic address:

The widespread use of nano titanium dioxide (nano-TiO₂) poses ecological risks to marine ecosystems, especially when combined with ocean warming. However, most previous studies have only examined water-related exposures, leaving a gap in research on the impact of food transfer on organisms. In this work, the harmful impacts of nano-TiO on the Japanese swimming crab Charybdis japonica were studied through three scenarios: direct exposure (DE) of the crabs to warming and nano-TiO, indirect exposure (IE) via consumption of thick-shelled mussels Mytilus coruscus exposed to the same conditions, and combined exposure (CE), where crabs were directly subjected to warming and nano-TiO while feeding affected mussels.

View Article and Find Full Text PDF

Cooperative and Independent Functionality of tmRNA and SmpB in : A Multifunctional Exploration Beyond Ribosome Rescue.

Int J Mol Sci

January 2025

Pathogenesis and Control of Pathogenic Microorganisms Research Team, School of Life and Health Sciences, Hainan Province Key Laboratory of One Health, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China.

The trans-translation system, mediated by transfer-messenger RNA (tmRNA, encoded by the gene) and its partner protein SmpB, helps to release ribosomes stalled on defective mRNA and targets incomplete protein products for hydrolysis. Knocking out the and genes in various pathogens leads to different phenotypic changes, indicating that they have both cooperative and independent functionalities. This study aimed to clarify the functional relationships between tmRNA and SmpB in a pathogen that poses threats in aquaculture and human health.

View Article and Find Full Text PDF

Seaweed residue hydrolysate enhances the intestinal health, immunity and disease resistance in northern snakehead (Channa argus).

Fish Shellfish Immunol

January 2025

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!