The proximate composition, sensory attributes, and shelf life of filets from barramundi, , were fed a fishmeal (FM) based diet (0PBM-0HI) and three test diets replacing FM protein entirely with 85% poultry by-products meal (PBM) and 15% (HI) larvae meal protein (85PBM-15HI), 80% PBM and 20% HI (80PBM-20HI) and 75% PBM and 25% HI (75PBM-25HI) were investigated. After a 56-day feeding trial, the crude protein, moisture, and ash percentage were unchanged while the crude lipid increased in barramundi filet when fed with PBM-HI-based diets. The increase in C12:0 (lauric acid) and C14:0 (myristic acid) resulted in an increase in the total saturated fatty acid while the monounsaturated fatty acid elevated due to an increase in C16:1n7 and C18:1cis + trans in the filet of the barramundi fed with a PBM-HI based diet. While the decrease in the total polyunsaturated fatty acid (PUFA) content in PBM-HI based fed barramundi filet was mainly due to a decrease in essential fatty acids including C20:5n3 [eicosapentaenoic acid (EPA)] and C22:6n3 [docosahexaenoic acid (DHA)] when compared with the 0PBM-0HI fed barramundi filet. The sensory quality was improved by PBM-HI-based diets, manifested by the highest scores given by the panelists. Texture profiles were not affected by diet but cohesiveness, gumminess, and chewiness decreased with increasing storage time. On days 1 and 8, skin brightness decreased in the skin of the barramundi fed with 85PBM-15HI and 80PBM-20HI compared with the skin of the 0PBM-0HI fed barramundi. Skin redness improved in fish-fed PBM-HI-based diets. The flesh brightness and yellowness increased significantly in barramundi when fed with PBM-HI-based diets. On days 1 and 4, the flesh brightness of the barramundi fed with PBM-HI-based diets demonstrated an increase compared with 0PBM-0HI. PBM-HI diets suppress lipid oxidation while lipid oxidation increased over the storage time. In summary, the improvement in sensory quality and color coupled with the suppression of rancidity in barramundi filets underpinned the potentiality of using the mixture of PBM and HI transformed from food waste in the barramundi diet to improve the filet quality and thus support sustainability and circular economy in aquaculture.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791043 | PMC |
http://dx.doi.org/10.3389/fnut.2021.788064 | DOI Listing |
Aquac Nutr
March 2024
Precision Aquaculture Department, 1 Research Link National University of Singapore, Temasek Life Sciences Laboratory, Singapore 117604, Singapore.
Black soldier fly larvae meal (BSFM) from has emerged as a dependable protein source in aquaculture. This study aimed to assess BSFM's digestibility in barramundi juveniles and compare it to soy protein concentrate meal (SPCM). Four diets (control, 30% BSFM; 30% SPCM; and commercial feed control) were tested on 1,800 barramundi juveniles (weight: 71.
View Article and Find Full Text PDFJ Fish Dis
September 2024
School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, New South Wales, Australia.
Fish meal (FM) replacement is essential for the sustainable expansion of aquaculture. This study focussed on the feasibility of replacing FM with a single-cell protein (SCP) derived from methanotrophic bacteria (Methylococcus capsulatus, Bath) in barramundi fry (Lates calcarifer). Three isonitrogenous and isoenergetic diets were formulated with 0%, 6.
View Article and Find Full Text PDFFish Shellfish Immunol
July 2024
Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan. Electronic address:
This study investigated the effects of fish protein hydrolysate derived from barramundi on growth performance, muscle composition, immune response, disease resistance, histology and gene expression in white shrimp (Penaeus vannamei). In vitro studies demonstrated FPH enhanced mRNA expressions of key immune-related genes and stimulated reactive oxygen species (ROS) production and phagocytic activity in shrimp hemocytes. To evaluate the effects of substituting fish meal with FPH in vivo, four isoproteic (43 %), isolipidic (6 %), and isoenergetic diets (489 kcal/100 g) were formulated with fish meal substitution levels of 0 % (control), 30 % (FPH30), 65 % (FPH65), and 100 % (FPH100).
View Article and Find Full Text PDFFront Nutr
March 2023
School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.
Valorising waste from the processing of fishery and aquaculture products into functional additives, and subsequent use in aquafeed as supplements could be a novel approach to promoting sustainability in the aquaculture industry. The present study supplemented 10% of various fish protein hydrolysates (FPHs), obtained from the hydrolysis of kingfish (KH), carp (CH) and tuna (TH) waste, with 90% of poultry by-product meal (PBM) protein to replace fishmeal (FM) completely from the barramundi diet. At the end of the trial, intestinal mucosal barriers damage, quantified by villus area (VA), lamina propria area (LPA), LPA ratio, villus length (VL), villus width (VW), and neutral mucin (NM) in barramundi fed a PBM-based diet was repaired when PBM was supplemented with various FPHs ( < 0.
View Article and Find Full Text PDFFoods
January 2023
School of Molecular and Life Sciences, Curtin University, 1 Turner Avenue, Bentley, WA 6102, Australia.
The physicochemical quality and shelf-life of fillets from barramundi, which were fed for 56 days on a mixture of poultry by-product meal (PBM), full-fat (FHI), and defatted HI (DHI), were investigated and compared to a fishmeal (FM) control diet. The proximate and total amino acids compositions of the fillets were unaffected by the test diets, while the mixture of PBM and HI larvae improved the sensory quality. An eight-day shelf-life study showed that PBM-HI-based diets improved the texture profile based upon the chewiness, cohesiveness, gumminess, and hardness, regardless of the storage time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!