Objectives: This study aimed to evaluate the effects and the underlying mechanisms of tertiary butylhydroquinone (TBHQ) on diabetic liver steatosis and cell survival.
Materials And Methods: We performed streptozocin injection and used a high-sugar-high-fat diet for mice to develop an animal model of type 2 diabetes mellitus (T2DM). Bodyweight, blood glucose levels, and content of insulin were measured on all of the mice. The liver tissues were observed by hematoxylin-eosin staining. Protein levels of the liver were measured by Western blot analysis in mice. Primary hepatocytes were induced by hypochlorous acid (HClO) and insulin to form insulin resistance (IR). Primary hepatocyte apoptosis was observed by Hoechst staining. The PI3K/AKT signaling pathway and β-arrestin-2 factor were evaluated by Western blot assay.
Results: TBHQ reduced the blood glucose level and content of insulin in serum, increased body weight, and effectively alleviated liver steatosis in diabetic mice. TBHQ significantly up-regulated the expression of p-PI3K, p-AKT, GLUT4, GSK3β, and β-arrestin-2 in the liver of diabetic mice. Cell experiments confirmed that TBHQ increased the survival ability of primary hepatocytes, and TBHQ improved the expression of p-PI3K, p-AKT, GLUT4, and GSK3β by activating β-arrestin-2 in primary hepatocytes.
Conclusion: TBHQ could alleviate liver steatosis and increase cell survival, and the mechanism is due in part to β-arrestin-2 activation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8769507 | PMC |
http://dx.doi.org/10.22038/IJBMS.2021.58156.12924 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environment Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Perfluorooctanoic acid (PFOA) is a persistent pollutant that has gained worldwide attention, owing to its widespread presence in the environment. Previous studies have reported that PFOA upregulates lipid metabolism and is associated with liver injury in humans. However, when the fatty acid degradation pathway is activated, lipid accumulation still occurs, suggesting the presence of unknown pathways and mechanisms that remain to be elucidated.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen University, Xiamen, 361102, China.
Bisphenol A (BPA) is an "environmental obesogen" and this study aims to investigate the intergenerational impacts of BPA-induced metabolic syndrome (MetS), specifically focusing on unraveling mechanisms. Exposure to BPA induces metabolic disorders in the paternal mice, which are then transmitted to offspring, leading to late-onset MetS. Mechanistically, BPA upregulates Srebf1, which in turn promotes the Pparg-dependent transcription of Dicer1 in spermatocytes, increasing the levels of multiple sperm microRNAs (miRNAs).
View Article and Find Full Text PDFCell Rep
January 2025
Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China. Electronic address:
Glucagon has recently been found to modulate liver fat content, in addition to its role in regulating gluconeogenesis. However, the precise mechanisms by which glucagon signaling synchronizes glucose and lipid metabolism in the liver remain poorly understood. By employing chemical and genetic approaches, we demonstrate that inhibiting the androgen receptor (AR) impairs the ability of glucagon to stimulate gluconeogenesis and lipid catabolism in primary hepatocytes and female mice.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
Metabolic reprogramming is important in primary biliary cholangitis (PBC) development. However, studies investigating the metabolic signature within the liver of PBC patients are limited. In this study, liver biopsies from 31 PBC patients and 15 healthy controls were collected, and comprehensive metabolomics, lipidomics, and proteomics analysis were conducted to characterize the metabolic landscape in PBC.
View Article and Find Full Text PDFPediatr Dev Pathol
January 2025
Prism Pediatric Gastro, Ahmedabad, Gujarat, India.
Indian childhood cirrhosis is a chronic liver disease in infants and children. Indian childhood cirrhosis is unique to the Indian subcontinent and occurs from 6 months to 5 years of age. We report 2 cases in a period of 5 years, including 1 male and 1 female.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!