Application of Intelligent Paradigm through Neural Networks for Numerical Solution of Multiorder Fractional Differential Equations.

Comput Intell Neurosci

Special Interest Group Modelling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21300, Malaysia.

Published: February 2022

In this study, the intelligent computational strength of neural networks (NNs) based on the backpropagated Levenberg-Marquardt (BLM) algorithm is utilized to investigate the numerical solution of nonlinear multiorder fractional differential equations (FDEs). The reference data set for the design of the BLM-NN algorithm for different examples of FDEs are generated by using the exact solutions. To obtain the numerical solutions, multiple operations based on training, validation, and testing on the reference data set are carried out by the design scheme for various orders of FDEs. The approximate solutions by the BLM-NN algorithm are compared with analytical solutions and performance based on mean square error (MSE), error histogram (EH), regression, and curve fitting. This further validates the accuracy, robustness, and efficiency of the proposed algorithm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791724PMC
http://dx.doi.org/10.1155/2022/2710576DOI Listing

Publication Analysis

Top Keywords

neural networks
8
numerical solution
8
multiorder fractional
8
fractional differential
8
differential equations
8
reference data
8
data set
8
blm-nn algorithm
8
application intelligent
4
intelligent paradigm
4

Similar Publications

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still necessitate biopsy confirmation.

View Article and Find Full Text PDF

In response to the pressing need for the detection of Monkeypox caused by the Monkeypox virus (MPXV), this study introduces the Enhanced Spatial-Awareness Capsule Network (ESACN), a Capsule Network architecture designed for the precise multi-class classification of dermatological images. Addressing the shortcomings of traditional Machine Learning and Deep Learning models, our ESACN model utilizes the dynamic routing and spatial hierarchy capabilities of CapsNets to differentiate complex patterns such as those seen in monkeypox, chickenpox, measles, and normal skin presentations. CapsNets' inherent ability to recognize and process crucial spatial relationships within images outperforms conventional CNNs, particularly in tasks that require the distinction of visually similar classes.

View Article and Find Full Text PDF

Medical image annotation is scarce and costly. Few-shot segmentation has been widely used in medical image from only a few annotated examples. However, its research on lesion segmentation for lung diseases is still limited, especially for pulmonary aspergillosis.

View Article and Find Full Text PDF

Inverse design of promising electrocatalysts for CO reduction via generative models and bird swarm algorithm.

Nat Commun

January 2025

Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 21189, China.

Directly generating material structures with optimal properties is a long-standing goal in material design. Traditional generative models often struggle to efficiently explore the global chemical space, limiting their utility to localized space. Here, we present a framework named Material Generation with Efficient Global Chemical Space Search (MAGECS) that addresses this challenge by integrating the bird swarm algorithm and supervised graph neural networks, enabling effective navigation of generative models in the immense chemical space towards materials with target properties.

View Article and Find Full Text PDF

Impact of sleep deprivation on dynamic functional connectivity states.

Handb Clin Neurol

January 2025

Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Sleep Disorders Center, IRCCS San Raffaele Scientific Institute, Milan, Italy.

Sleep deprivation (SD) is an experimental procedure to study the effects of sleep loss on the human brain. Neuroimaging techniques, such as functional magnetic resonance imaging (fMRI) and electroencephalography (EEG), have been pivotal in studying these effects. The present chapter aims to retrace the state of the art regarding the literature that examines the SD effects on the brain through functional connectivity (FC) evaluated in fMRI and EEG settings, separately.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!