trying...
3509547220230715
1663-4365132021Frontiers in aging neuroscienceFront Aging NeurosciImpaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment.78851978851978851910.3389/fnagi.2021.788519Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.Copyright © 2022 Li, Kitamura, Beverley, Koudelka, Duncombe, Lennen, Jansen, Marshall, Platt, Wiegand, Carare, Kalaria, Iliff and Horsburgh.LiMosiMCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.Edinburgh Medical School, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom.KitamuraAkihiroACentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.Department of Neurology, Shiga University of Medical Science, Otsu, Japan.BeverleyJoshuaJCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.KoudelkaJurajJCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.DuncombeJessicaJCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.LennenRossRCentre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.JansenMaurits AMACentre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.MarshallIanICentre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.PlattBettinaBSchool of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, United Kingdom.WiegandUlrich KUKCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.CarareRoxana OROFaculty of Medicine, University of Southampton, Southampton, United Kingdom.KalariaRajesh NRNTranslational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom.IliffJeffrey JJJVISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States.Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States.Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States.HorsburghKarenKCentre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.engMR/K015710/1MRC_Medical Research CouncilUnited KingdomR01 AG054456AGNIA NIH HHSUnited StatesJournal Article20220113
SwitzerlandFront Aging Neurosci1015258241663-4365amyloid-β (Aβ)carotid stenosiscerebral amyloid angiopathy (CAA)glymphatic functionvascular cognitive impairmentvascular pulsationThe authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
2021102202112720221315552022216020222161202111epublish35095472PMC879313910.3389/fnagi.2021.788519Alhusaini S., Karama S., Nguyen T. V., Thiel A., Bernhardt B. C., Cox S. R., et al. (2018). Association between carotid atheroma and cerebral cortex structure at age 73 years. Ann. Neurol. 84 576–587. 10.1002/ana.2532410.1002/ana.25324PMC632824830179274Alosco M. L., Brickman A. M., Spitznagel M. B., Garcia S. L., Narkhede A., Griffith E. Y., et al. (2013). Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest. Heart Fail 19 E29–E34. 10.1111/chf.1202510.1111/chf.12025PMC369259423517434Alsop D. C., Dai W., Grossman M., Detre J. A. (2010). Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J. Alzheimers Dis. 20 871–880. 10.3233/JAD-2010-09169910.3233/JAD-2010-091699PMC364389220413865Aribisala B. S., Wiseman S., Morris Z., Valdes-Hernandez M. C., Royle N. A., Maniega S. M., et al. (2014b). Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke 45 605–607. 10.1161/STROKEAHA.113.00405910.1161/STROKEAHA.113.004059PMC390653924399375Aribisala B. S., Morris Z., Eadie E., Thomas A., Gow A., Valdes Hernandez M. C., et al. (2014a). Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension 63 1011–1018. 10.1161/HYPERTENSIONAHA.113.0273510.1161/HYPERTENSIONAHA.113.02735PMC398410824470459Arvanitakis Z., Capuano A. W., Leurgans S. E., Bennett D. A., Schneider J. A. (2016). Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15 934–943. 10.1016/S1474-4422(16)30029-110.1016/S1474-4422(16)30029-1PMC496910527312738Balestrini S., Perozzi C., Altamura C., Vernieri F., Luzzi S., Bartolini M., et al. (2013). Severe carotid stenosis and impaired cerebral hemodynamics can influence cognitive deterioration. Neurology 80 2145–2150. 10.1212/WNL.0b013e318295d71a10.1212/WNL.0b013e318295d71a23624562Barker R., Ashby E. L., Wellington D., Barrow V. M., Palmer J. C., Kehoe P. G., et al. (2014). Pathophysiology of white matter perfusion in Alzheimer’s disease and vascular dementia. Brain 137 1524–1532. 10.1093/brain/awu04010.1093/brain/awu040PMC399971524618270Benveniste H., Nedergaard M. (2021). Cerebral small vessel disease: a glymphopathy? Curr. Opin. Neurobiol. 72 15–21. 10.1016/j.conb.2021.07.00610.1016/j.conb.2021.07.00634407477Chao L. L., Buckley S. T., Kornak J., Schuff N., Madison C., Yaffe K., et al. (2010). ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis. Assoc. Disord. 24 19–27. 10.1097/WAD.0b013e3181b4f73610.1097/WAD.0b013e3181b4f736PMC286522020220321Cheng H. L., Lin C. J., Soong B. W., Wang P. N., Chang F. C., Wu Y. T., et al. (2012). Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis. Stroke 43 2567–2573. 10.1161/STROKEAHA.111.64561410.1161/STROKEAHA.111.64561422935402Coltman R., Spain A., Tsenkina Y., Fowler J. H., Smith J., Scullion G., et al. (2011). Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol. Aging 32 2323.e7–e12. 10.1016/j.neurobiolaging.2010.09.00510.1016/j.neurobiolaging.2010.09.00520961660De Jong G. I., De Vos R. A., Steur E. N., Luiten P. G. (1997). Cerebrovascular hypoperfusion: a risk factor for Alzheimer’s disease? Animal model and postmortem human studies. Ann. N. Y. Acad. Sci. 826 56–74. 10.1111/j.1749-6632.1997.tb48461.x10.1111/j.1749-6632.1997.tb48461.x9329681de la Torre J. C. (2000a). Cerebral hypoperfusion, capillary degeneration, and development of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 14(Suppl. 1) S72–S81. 10.1097/00002093-200000001-0001210.1097/00002093-200000001-0001210850734de la Torre J. C. (2000b). Critically attained threshold of cerebral hypoperfusion: can it cause Alzheimer’s disease? Ann. N. Y Acad. Sci. 903 424–436. 10.1111/j.1749-6632.2000.tb06394.x10.1111/j.1749-6632.2000.tb06394.x10818533de la Torre J. C. (2000c). Impaired cerebromicrovascular perfusion. Summary of evidence in support of its causality in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 924 136–152. 10.1111/j.1749-6632.2000.tb05572.x10.1111/j.1749-6632.2000.tb05572.x11193790de la Torre J. C. (2012b). Cerebral Hemodynamics and Vascular Risk Factors: setting the stage for Alzheimer’s disease. J. Alzheimers Dis. 32 553–567. 10.3233/JAD-2012-12079310.3233/JAD-2012-12079322842871de la Torre J. C. (2012a). Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc. Psychiatry Neurol. 2012:367516. 10.1155/2012/36751610.1155/2012/367516PMC351807723243502Dichgans M., Leys D. (2017). Vascular cognitive impairment. Circ. Res. 120 573–591.28154105Ding J., Mitchell G. F., Bots M. L., Sigurdsson S., Harris T. B., Garcia M., et al. (2015). Carotid arterial stiffness and risk of incident cerebral microbleeds in older people: the Age, Gene/Environment Susceptibility (AGES)-Reykjavik study. Arterioscler. Thromb. Vasc. Biol. 35 1889–1895. 10.1161/ATVBAHA.115.30545110.1161/ATVBAHA.115.305451PMC451455626112009Ding J., Sigurethsson S., Jonsson P. V., Eiriksdottir G., Charidimou A., Lopez O. L., et al. (2017). Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-reykjavik study. JAMA Neurol. 74 1105–1112. 10.1001/jamaneurol.2017.139710.1001/jamaneurol.2017.1397PMC569523028715552Doubal F. N., Maclullich A. M., Ferguson K. J., Dennis M. S., Wardlaw J. M. (2010). Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 41 450–454. 10.1161/STROKEAHA.109.56491410.1161/STROKEAHA.109.56491420056930Duncombe J., Kitamura A., Hase Y., Ihara M., Kalaria R. N., Horsburgh K. (2017a). Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. (Lond.) 131 2451–2468. 10.1042/CS2016072710.1042/CS2016072728963120Duncombe J., Lennen R. J., Jansen M. A., Marshall I., Wardlaw J. M., Horsburgh K. (2017b). Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol. Appl. Neurobiol. 43 477–491. 10.1111/nan.1237510.1111/nan.1237528039950Esiri M. M., Nagy Z., Smith M. Z., Barnetson L., Smith A. D. (1999). Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354 919–920. 10.1016/S0140-6736(99)02355-710.1016/S0140-6736(99)02355-710489957Fowler J. H., Mcqueen J., Holland P. R., Manso Y., Marangoni M., Scott F., et al. (2017). Dimethyl fumarate improves white matter function following severe hypoperfusion: involvement of microglia/macrophages and inflammatory mediators. J. Cereb. Blood Flow Metab. 38 1354–1370. 10.1177/0271678X1771310510.1177/0271678X17713105PMC607792828606007Gaberel T., Gakuba C., Goulay R., Martinez De Lizarrondo S., Hanouz J. L., Emery E., et al. (2014). Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45 3092–3096. 10.1161/STROKEAHA.114.00661710.1161/STROKEAHA.114.00661725190438Gorelick P. B., Scuteri A., Black S. E., Decarli C., Greenberg S. M., Iadecola C., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42 2672–2713. 10.1161/str.0b013e318229949610.1161/str.0b013e3182299496PMC377866921778438Gottesman R. F., Schneider A. L., Zhou Y., Coresh J., Green E., Gupta N., et al. (2017). Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317 1443–1450. 10.1001/jama.2017.309010.1001/jama.2017.3090PMC592189628399252Gupta A., Iadecola C. (2015). Impaired Abeta clearance: a potential link between atherosclerosis and Alzheimer’s disease. Front. Aging Neurosci. 7:115. 10.3389/fnagi.2015.0011510.3389/fnagi.2015.00115PMC446882426136682Hachinski V., Munoz D. G. (1997). Cerebrovascular pathology in Alzheimer’s disease: cause, effect or epiphenomenon? Ann. N. Y. Acad. Sci. 826 1–6. 10.1111/j.1749-6632.1997.tb48456.x10.1111/j.1749-6632.1997.tb48456.x9329676Holland P. R., Bastin M. E., Jansen M. A., Merrifield G. D., Coltman R. B., Scott F., et al. (2011). MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol. Aging 32:2325.e1–6. 10.1016/j.neurobiolaging.2010.11.00910.1016/j.neurobiolaging.2010.11.00921194797Holland P. R., Searcy J. L., Salvadores N., Scullion G., Chen G., Lawson G., et al. (2015). Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease. J. Cereb. Blood Flow Metab. 35 1005–1014. 10.1038/jcbfm.2015.1210.1038/jcbfm.2015.12PMC464024725669904Huang K. L., Lin K. J., Ho M. Y., Chang Y. J., Chang C. H., Wey S. P., et al. (2012). Amyloid deposition after cerebral hypoperfusion: evidenced on [F-18]AV-45 positron emission tomography. J. Neurol. Sci. 319 124–129. 10.1016/j.jns.2012.04.01410.1016/j.jns.2012.04.01422572706Hughes T. M., Kuller L. H., Barinas-Mitchell E. J., Mcdade E. M., Klunk W. E., Cohen A. D., et al. (2014). Arterial stiffness and beta-amyloid progression in nondemented elderly adults. JAMA Neurol. 71 562–568. 10.1001/jamaneurol.2014.18610.1001/jamaneurol.2014.186PMC426724924687165Hughes T. M., Wagenknecht L. E., Craft S., Mintz A., Heiss G., Palta P., et al. (2018). Arterial stiffness and dementia pathology: atherosclerosis risk in communities (ARIC)-PET study. Neurology 90 e1248–e1256. 10.1212/WNL.000000000000525910.1212/WNL.0000000000005259PMC589061329549223Iliff J. J., Wang M., Zeppenfeld D. M., Venkataraman A., Plog B. A., Liao Y., et al. (2013b). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33 18190–18199. 10.1523/JNEUROSCI.1592-13.201310.1523/JNEUROSCI.1592-13.2013PMC386641624227727Iliff J. J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., et al. (2013a). Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123 1299–1309. 10.1172/JCI6767710.1172/JCI67677PMC358215023434588Iliff J. J., Wang M., Liao Y., Plogg B. A., Peng W., Gundersen G. A., et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4:147ra111. 10.1126/scitranslmed.300374810.1126/scitranslmed.3003748PMC355127522896675Johnston S. C., O’meara E. S., Manolio T. A., Lefkowitz D., O’leary D. H., Goldstein S., et al. (2004). Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann. Intern. Med. 140 237–247. 10.7326/0003-4819-140-4-200402170-0000510.7326/0003-4819-140-4-200402170-0000514970146Kitamura A., Manso Y., Duncombe J., Searcy J., Koudelka J., Binnie M., et al. (2017). Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Sci. Rep. 7:4299. 10.1038/s41598-017-04082-010.1038/s41598-017-04082-0PMC548732428655874Kober F., Duhamel G., Cozzone P. J. (2008). Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR Biomed. 21 781–792. 10.1002/nbm.125310.1002/nbm.125318384177Kress B. T., Iliff J. J., Xia M., Wang M., Wei H. S., Zeppenfeld D., et al. (2014). Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76 845–861. 10.1002/ana.2427110.1002/ana.24271PMC424536225204284Matin N., Fisher C., Jackson W. F., Dorrance A. M. (2016). Bilateral common carotid artery stenosis in normotensive rats impairs endothelium-dependent dilation of parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol. 310 H1321–H1329. 10.1152/ajpheart.00890.201510.1152/ajpheart.00890.2015PMC489583226968546Mestre H., Du T., Sweeney A. M., Liu G., Samson A. J., Peng W., et al. (2020). Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367:eaax7171. 10.1126/science.aax717110.1126/science.aax7171PMC737510932001524Mestre H., Tithof J., Du T., Song W., Peng W. G., Sweeney A. M., et al. (2018). Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:4878. 10.1038/s41467-018-07318-310.1038/s41467-018-07318-3PMC624298230451853Montine T. J., Koroshetz W. J., Babcock D., Dickson D. W., Galpern W. R., Glymour M. M., et al. (2014). Recommendations of the Alzheimer’s disease-related dementias conference. Neurology 83 851–860. 10.1212/WNL.000000000000073310.1212/WNL.0000000000000733PMC415504625080517Morris A. W., Sharp M. M., Albargothy N. J., Fernandes R., Hawkes C. A., Verma A., et al. (2016). Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 131 725–736. 10.1007/s00401-016-1555-z10.1007/s00401-016-1555-zPMC483550926975356Okamoto Y., Yamamoto T., Kalaria R. N., Senzaki H., Maki T., Hase Y., et al. (2012). Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 123 381–394. 10.1007/s00401-011-0925-910.1007/s00401-011-0925-9PMC328289722170742Patel A., Moalem A., Cheng H., Babadjouni R. M., Patel K., Hodis D. M., et al. (2017). Chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis causes selective recognition impairment in adult mice. Neurol. Res. 39 910–917. 10.1080/01616412.2017.135542310.1080/01616412.2017.1355423PMC559107828828966Paxinos G., Franklin K. B. J. (2001). The Mouse Brain in Stereotaxic Coordinates, 2nd Edn. San Diego: Academic Press.Peng W., Achariyar T. M., Li B., Liao Y., Mestre H., Hitomi E., et al. (2016). Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93 215–225. 10.1016/j.nbd.2016.05.01510.1016/j.nbd.2016.05.015PMC498091627234656Poels M. M., Zaccai K., Verwoert G. C., Vernooij M. W., Hofman A., Van Der Lugt A., et al. (2012). Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke 43 2637–2642. 10.1161/strokeaha.111.64226410.1161/strokeaha.111.64226422879099Potter G. M., Chappell F. M., Morris Z., Wardlaw J. M. (2015). Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc. Dis. 39 224–231. 10.1159/00037515310.1159/000375153PMC438614425823458Reimer M. M., Mcqueen J., Searcy L., Scullion G., Zonta B., Desmazieres A., et al. (2011). Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J. Neurosci. 31 18185–18194. 10.1523/JNEUROSCI.4936-11.201110.1523/JNEUROSCI.4936-11.2011PMC433797422159130Roberts J. M., Maniskas M. E., Bix G. J. (2018). Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS One 13:e0195765. 10.1371/journal.pone.019576510.1371/journal.pone.0195765PMC589701729649307Romero J. R., Beiser A., Seshadri S., Benjamin E. J., Polak J. F., Vasan R. S., et al. (2009). Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: the Framingham study. Stroke 40 1590–1596. 10.1161/STROKEAHA.108.53524510.1161/STROKEAHA.108.535245PMC270532419265054Salvadores N., Searcy J. L., Holland P. R., Horsburgh K. (2017). Chronic cerebral hypoperfusion alters amyloid-beta peptide pools leading to cerebral amyloid angiopathy, microinfarcts and haemorrhages in Tg-SwDI mice. Clin. Sci. (Lond.) 131 2109–2123. 10.1042/CS2017096210.1042/CS2017096228667120Schuff N., Matsumoto S., Kmiecik J., Studholme C., Du A., Ezekiel F., et al. (2009). Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement. 5 454–462. 10.1016/j.jalz.2009.04.123310.1016/j.jalz.2009.04.1233PMC280218119896584Shi Y., Wardlaw J. M. (2016). Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc. Neurol. 1 83–92. 10.1136/svn-2016-00003510.1136/svn-2016-000035PMC543519828959468Shi Y., Thrippleton M. J., Blair G. W., Dickie D. A., Marshall I., Hamilton I., et al. (2018a). Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J. Cereb. Blood Flow Metab. 40 85–99. 10.1177/0271678X1880395610.1177/0271678X18803956PMC692855130295558Shi Y., Thrippleton M. J., Marshall I., Wardlaw J. M. (2018b). Intracranial pulsatility in patients with cerebral small vessel disease: a systematic review. Clin. Sci. (Lond.) 132 157–171. 10.1042/CS2017128010.1042/CS2017128029229867Shibata M., Ohtani R., Ihara M., Tomimoto H. (2004). White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35 2598–2603. 10.1161/01.STR.0000143725.19053.6010.1161/01.STR.0000143725.19053.6015472111Shibata M., Yamasaki N., Miyakawa T., Kalaria R. N., Fujita Y., Ohtani R., et al. (2007). Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38 2826–2832. 10.1161/STROKEAHA.107.49015110.1161/STROKEAHA.107.49015117761909Shokri-Kojori E., Wang G. J., Wiers C. E., Demiral S. B., Guo M., Kim S. W., et al. (2018). beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. U.S.A. 115 4483–4488. 10.1073/pnas.172169411510.1073/pnas.1721694115PMC592492229632177Snowdon D. A., Greiner L. H., Mortimer J. A., Riley K. P., Greiner P. A., Markesbery W. R. (1997). Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277 813–817. 10.1001/jama.1997.0354034004703110.1001/jama.1997.035403400470319052711Wang M., Ding F., Deng S., Guo X., Wang W., Iliff J. J., et al. (2017). Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J. Neurosci. 37 2870–2877. 10.1523/JNEUROSCI.2112-16.201710.1523/JNEUROSCI.2112-16.2017PMC535433228188218Wardlaw J. M., Allerhand M., Eadie E., Thomas A., Corley J., Pattie A., et al. (2017). Carotid disease at age 73 and cognitive change from age 70 to 76 years: a longitudinal cohort study. J. Cereb. Blood Flow Metab. 37 3042–3052. 10.1177/0271678X1668369310.1177/0271678X16683693PMC553626028155579Wardlaw J. M., Smith E. E., Biessels G. J., Cordonnier C., Fazekas F., Frayne R., et al. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12 822–838. 10.1016/S1474-4422(13)70124-810.1016/S1474-4422(13)70124-8PMC371443723867200Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342 373–377. 10.1126/science.124122410.1126/science.1241224PMC388019024136970Xu Z., Xiao N., Chen Y., Huang H., Marshall C., Gao J., et al. (2015). Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol. Neurodegener. 10:58. 10.1186/s13024-015-0056-110.1186/s13024-015-0056-1PMC463108926526066
trying2...
trying...
1426501MCID_676f08607e30e463e609d98f 39725239 39721674 39721217 39720539 39719574 function "functional"[All Fields] OR "functional's"[All Fields] OR "functionalities"[All Fields] OR "functionality"[All Fields] OR "functionalization"[All Fields] OR "functionalizations"[All Fields] OR "functionalize"[All Fields] OR "functionalized"[All Fields] OR "functionalizes"[All Fields] OR "functionalizing"[All Fields] OR "functionally"[All Fields] OR "functionals"[All Fields] OR "functioned"[All Fields] OR "functioning"[All Fields] OR "functionings"[All Fields] OR "functions"[All Fields] OR "physiology"[Subheading] OR "physiology"[All Fields] OR "function"[All Fields] OR "physiology"[MeSH Terms] "glymphatic"[All Fields] AND ("functional"[All Fields] OR "functional s"[All Fields] OR "functionalities"[All Fields] OR "functionality"[All Fields] OR "functionalization"[All Fields] OR "functionalizations"[All Fields] OR "functionalize"[All Fields] OR "functionalized"[All Fields] OR "functionalizes"[All Fields] OR "functionalizing"[All Fields] OR "functionally"[All Fields] OR "functionals"[All Fields] OR "functioned"[All Fields] OR "functioning"[All Fields] OR "functionings"[All Fields] OR "functions"[All Fields] OR "physiology"[MeSH Subheading] OR "physiology"[All Fields] OR "function"[All Fields] OR "physiology"[MeSH Terms]) trying2...
trying...
3972523920241226
1873-27472024Dec24Brain research bulletinBrain Res BullCognitive disorders: potential astrocyte-based mechanism.11118111118110.1016/j.brainresbull.2024.111181S0361-9230(24)00315-0Cognitive disorders are a common clinical manifestation, including a deterioration in the patient's memory ability, attention, executive power, language, and other functions. The contributing factors of cognitive disorders are numerous and diverse in nature, including organic diseases and other mental disorders. Neurodegenerative diseases are a common type of organic disease related to the pathology of neuronal death and disruption of glial cell balance, ultimately accompanied with cognitive impairment. Thus, cognitive disorder frequently serves as an extremely critical indicator of neurodegenerative disorders. Cognitive impairments negatively affect patients' daily lives. However, our understanding of the precise pathogenic pathways of cognitive defects remains incomplete. The most prevalent kind of glial cells in the central nervous system are called astrocytes. They have a unique significance in cerebral function because of their wide range of functions in maintaining homeostasis in the central nervous system, regulating synaptic plasticity, and so on. Dysfunction of astrocytes is intimately linked to cognitive disorders, and we are attempting to understand this phenomenon predominantly from those perspectives: neuroinflammation, astrocytic senescence, connexin, Ca2+ signaling, mitochondrial dysfunction, and the glymphatic system.Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.LiShiyuSDepartment of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.ChenYeruYDepartment of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China.ChenGangGDepartment of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address: China.chengang120@zju.edu.cn.engJournal ArticleReview20241224
United StatesBrain Res Bull76058180361-9230IMastrocytic homeostasiscognitionDeclaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
202482520241211202412232024122702120241227021202412261918aheadofprint3972523910.1016/j.brainresbull.2024.111181S0361-9230(24)00315-0
397216742024122520241225
1099-14923822025FebNMR in biomedicineNMR BiomedEvaluation of the Glymphatic System in Rabbits Using Gadobutrol-Enhanced MR Cisternography With T1 and T2 Mapping.e5314e531410.1002/nbm.5314We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.Twenty-one rabbits were included in the study. The CE-MRC exams with T1/T2 mappings were categorized into approximate time points based on an intention-to-scan approach: precontrast, less than 4 h after contrast, 24 h after contrast, and 24 to 120 h after gadobutrol. The presence of contrast media in the head and neck structures was scored with a 3-point scale (present, score: 2; absent, score: 0; and inconsistent, score: 1). T1 and T2 estimates were directly derived by drawing regions of interest on the corresponding maps.Gadobutrol accumulation was detected in the CSF near the cribriform plate and nasal areas on early-phase postcontrast images of all animals. These contrast material accumulations completely disappeared on the images obtained in postcontrast ≥ 24 h. The lowest T1 and T2 estimates in olfactory and cerebral areas were observed on early-phase images. Significant correlations were observed between the enhancement of the bladder and the medial portion of the sclera and the enhancement of inner ear structures, olfactory regions, turbinates, nasal cavities, and cranial subarachnoid spaces. The T1 and T2 estimates of the septum and olfactory bulb were generally lower than those measured in the frontal and parietal lobes on early-phase images.Our findings, which indicate an absence of clearly visible arachnoid granulations in rabbits, support the significance of olfactory outflow and the glymphatic system as highlighted in recent literature. Glymphatic transport can be more effectively demonstrated using T1 mapping in rabbits. The anatomical and physiological differences between human and rodent central nervous systems must be considered when translating experimental results from rabbits to humans.© 2024 John Wiley & Sons Ltd.AlginOktayO0000-0002-3877-8366Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye.Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye.National MR Research Center, Bilkent University, Ankara, Türkiye.CetinkayaKadirKNeurosurgery Department, Tokat Government Hospital, Tokat, Türkiye.OtoCagdasCDepartment of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye.Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye.National MR Research Center, Bilkent University, Ankara, Türkiye.Department of Anatomy, Veterinary Faculty, Ankara University, Ankara, Türkiye.AyberkGıyasGNeurosurgery Department, Medical Faculty, Yıldırım Beyazıt University, Ankara, Türkiye.engJournal Article
EnglandNMR Biomed89152330952-34801BJ477IO2Lgadobutrol0Organometallic Compounds0Contrast MediaIMAnimalsRabbitsMagnetic Resonance ImagingOrganometallic CompoundsGlymphatic Systemdiagnostic imagingContrast MediachemistryCerebrospinal Fluiddiagnostic imagingmetabolismcerebrospinal fluid (CSF)cisternographygadoliniumglymphaticintrathecalrabbits
202411212024101620241282024122602120241226020202412252023ppublish3972167410.1002/nbm.5314ReferencesS. Quintin, A. Barpujari, Y. Mehkri, J. Hernandez, and B. Lucke‐Wold, “The Glymphatic System and Subarachnoid Hemorrhage: Disruption and Recovery,” Exploration of Neuroprotective Therapy 2 (2022): 118–130.A. S. Thrane, V. Rangroo Thrane, and M. Nedergaard, “Drowning Stars: Reassessing the Role of Astrocytes in Brain Edema,” Trends in Neurosciences 37, no. 11 (2014): 620–628.L. M. Hablitz and M. Nedergaard, “The Glymphatic System: A Novel Component of Fundamental Neurobiology,” Journal of Neuroscience 41, no. 37 (2021): 7698–7711.M. Pollay, “The Function and Structure of the Cerebrospinal Fluid Outflow System,” Cerebrospinal Fluid Research 7 (2010): 9.T. J. Atchley, B. Vukic, M. Vukic, and B. C. Walters, “Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform,” Neurosurgery 91, no. 1 (2022): 1–7.B. C. Reeves, J. K. Karimy, A. J. Kundishora, et al., “Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus,” Trends in Molecular Medicine 26, no. 3 (2020): 285–295.C. Papaiconomou, R. Bozanovic‐Sosic, A. Zakharov, and M. Johnston, “Does Neonatal Cerebrospinal Fluid Absorption Occur via Arachnoid Projections or Extracranial Lymphatics?,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 283, no. 4 (2002): R869–R876.E. N. T. P. Bakker, D. M. P. Naessens, and E. VanBavel, “Paravascular Spaces: Entry to or Exit From the Brain?,” Experimental Physiology 104, no. 7 (2019): 1013–1017.T. Bohr, P. G. Hjorth, S. C. Holst, et al., “The Glymphatic System: Current Understanding and Modeling,” iScience 25, no. 9 (2022): 104987.E. Melin, P. K. Eide, and G. Ringstad, “In Vivo Assessment of Cerebrospinal Fluid Efflux to Nasal Mucosa in Humans,” Scientific Reports 10, no. 1 (2020): 14974.T. Taoka and S. Naganawa, “Glymphatic Imaging Using MRI,” Journal of Magnetic Resonance Imaging 51, no. 1 (2020): 11–24.Y. Xue, X. Liu, S. Koundal, et al., “In Vivo T1 Mapping for Quantifying Glymphatic System Transport and Cervical Lymph Node Drainage,” Scientific Reports 10, no. 1 (2020): 14592.P. R. Villamayor, J. M. Cifuentes, L. Quintela, R. Barcia, and P. Sanchez‐Quinteiro, “Structural, Morphometric and Immunohistochemical Study of the Rabbit Accessory Olfactory Bulb,” Brain Structure & Function 225, no. 1 (2020): 203–226.J. J. Iliff, M. Wang, Y. Liao, et al., “A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid Beta,” Science Translational Medicine 4, no. 147 (2012): 147ra111.J. G. Veening and H. P. Barendregt, “The Regulation of Brain States by Neuroactive Substances Distributed via the Cerebrospinal Fluid; A Review,” Cerebrospinal Fluid Research 7 (2010): 1–16.K. G. Kapoor, S. E. Katz, D. M. Grzybowski, and M. Lubow, “Cerebrospinal Fluid Outflow: An Evolving Perspective,” Brain Research Bulletin 77, no. 6 (2008): 327–334.P. H. Kuo, C. Stuehm, S. Squire, and K. Johnson, “Meningeal Lymphatic Vessel Flow Runs Countercurrent to Venous Flow in the Superior Sagittal Sinus of the Human Brain,” Tomography 4, no. 3 (2018): 99–104.F. Troili, V. Cipollini, M. Moci, et al., “Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System,” Frontiers in Neuroanatomy 14 (2020): 17.J. Chen, L. Wang, H. Xu, et al., “Meningeal Lymphatics Clear Erythrocytes That Arise From Subarachnoid Hemorrhage,” Nature Communications 11, no. 1 (2020): 3159.T. Pu, W. Zou, W. Feng, et al., “Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage,” Experimental Neurobiology 28, no. 1 (2019): 104–118.T. Gaberel, C. Gakuba, R. Goulay, et al., “Impaired Glymphatic Perfusion After Strokes Revealed by Contrast‐Enhanced MRI: A new Target for Fibrinolysis?,” Stroke 45, no. 10 (2014): 3092–3096.K. Møllgård, F. R. M. Beinlich, P. Kusk, et al., “A Mesothelium Divides the Subarachnoid Space Into Functional Compartments,” Science 379, no. 6627 (2023): 84–88.M. Zhang, X. Hu, and L. Wang, “A Review of Cerebrospinal Fluid Circulation and the Pathogenesis of Congenital Hydrocephalus,” Neurochemical Research 49, no. 5 (2024): 1123–1136.A. Zakharov, C. Papaiconomou, L. Koh, J. Djenic, R. Bozanovic‐Sosic, and M. Johnston, “Integrating the Roles of Extracranial Lymphatics and Intracranial Veins in Cerebrospinal Fluid Absorption in Sheep,” Microvascular Research 67, no. 1 (2004): 96–104.J. G. McComb, H. Davson, S. Hyman, and M. H. Weiss, “Cerebrospinal Fluid Drainage Is Influenced by Ventricular Pressure in the Rabbit,” Journal of Neurosurgery 56 (1982): 790–797.S. B. Hladky and M. A. Barrand, “The Glymphatic Hypothesis: The Theory and the Evidence,” Fluids and Barriers of the CNS 19, no. 1 (2022): 9.B. Bedussi, M. Almasian, J. de Vos, E. VanBavel, and E. N. Bakker, “Paravascular Spaces at the Brain Surface: Low Resistance Pathways for Cerebrospinal Fluid Flow,” Journal of Cerebral Blood Flow and Metabolism 38, no. 4 (2018): 719–726.G. Ringstad and P. K. Eide, “The Pitfalls of Interpreting Hyperintense FLAIR Signal as Lymph Outside the Human Brain,” Nature Communications 14, no. 1 (2023): 4913.C. Sadegh, H. Xu, J. Sutin, et al., “Choroid Plexus‐Targeted NKCC1 Overexpression to Treat Post‐Hemorrhagic Hydrocephalus,” Neuron 111, no. 10 (2023): 1591–1608.e4.M. S. Albayram, G. Smith, F. Tufan, et al., “Non‐Invasive MR Imaging of Human Brain Lymphatic Networks With Connections to Cervical Lymph Nodes,” Nature Communications 13, no. 1 (2022): 203.M. W. Bradbury and R. J. Westrop, “Factors Influencing Exit of Substances From Cerebrospinal Fluid Into Deep Cervical Lymph of the Rabbit,” Journal of Physiology 339 (1983): 519–534.J. K. Kalmey, J. G. Thewissen, and D. E. Dluzen, “Age‐Related Size Reduction of Foramina in the Cribriform Plate,” Anatomical Record 251, no. 3 (1998): 326–329.R. Hudson, A. Arriola, M. Martinez‐Gomez, and H. Distel, “Effect of Air Pollution on Olfactory Function in Residents of Mexico City,” Chemical Senses 31 (2006): 79–85.S. Raouf, S. Kodsi, H. Schwartzstein, M. Hymowitz, K. Black, and H. D. Pomeranz, “Bilateral Optic Nerve Compression Secondary to Skull Hyperostosis From Vitamin a Deficiency,” Journal of AAPOS 25, no. 4 (2021): 245–247.X. Wang, N. Lou, A. Eberhardt, et al., “An Ocular Glymphatic Clearance System Removes Beta‐Amyloid From the Rodent Eye,” Science Translational Medicine 12, no. 536 (2020): eaaw3210.N. A. Jessen, A. S. Munk, I. Lundgaard, and M. Nedergaard, “The Glymphatic System: A Beginner's Guide,” Neurochemical Research 40, no. 12 (2015): 2583–2599.P. Wostyn and M. Nedergaard, “The Potential Influence of Sleep on Translaminar Pressure Dynamics and Ocular Glymphatic Outflow in Microgravity: Implications for Optic Disc Edema in Astronauts,” Eye (London, England) 38 (2024): 3398, https://doi.org/10.1038/s41433‐024‐03269‐w.X. J. Tong, G. Akdemir, M. Wadhwa, A. S. Verkman, and A. J. Smith, “Large Molecules From the Cerebrospinal Fluid Enter the Optic Nerve but Not the Retina of Mice,” Fluids and Barriers of the CNS 21, no. 1 (2024): 1.J. Qu, B. Pan, T. Su, et al., “T1 and T2 Mapping for Identifying Malignant Lymph Nodes in Head and Neck Squamous Cell Carcinoma,” Cancer Imaging 23, no. 1 (2023): 125.B. Madler, T. Harris, and A. L. MacKay, “3D‐Relaxometry‐Quantitative T1 and T2 Brain Mapping at 3T,” Proceedings on International Society for Magnetic Resonance in Medicine 14 (2006): 958.M. Ganzetti, N. Wenderoth, and D. Mantini, “Mapping Pathological Changes in Brain Structure by Combining T1‐ and T2‐Weighted MR Imaging Data,” Neuroradiology 57, no. 9 (2015): 917–928.D. Huang, J. Ju, B. Jiang, et al., “Changes of the Expression and Activity of Phosphodiesterase V in the Basilar Artery Before and After Cerebral Vasospasm in a Rabbit Model,” World Neurosurgery 132 (2019): e795–e801.H. Benveniste, H. Lee, B. Ozturk, et al., “Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging,” Neuroscience 474 (2021): 63–79.M. J. P. van Osch, A. Wåhlin, P. Scheyhing, et al., “Human Brain Clearance Imaging: Pathways Taken by Magnetic Resonance Imaging Contrast Agents After Administration in Cerebrospinal Fluid and Blood,” NMR in Biomedicine 37, no. 9 (2024): e5159.D. Jiang, Y. Gou, Z. Wei, X. Hou, V. Yedavalli, and H. Lu, “Quantification of T1 and T2 of Subarachnoid CSF: Implications for Water Exchange Between CSF and Brain Tissues,” Magnetic Resonance in Medicine 90, no. 6 (2023): 2411–2419.X. Miao, A. G. Paez, S. Rajan, et al., “Functional Activities Detected in the Olfactory Bulb and Associated Olfactory Regions in the Human Brain Using T2‐Prepared BOLD Functional MRI at 7T,” Frontiers in Neuroscience 15 (2021): 723441.O. Algin, U. Koc, and G. Ayberk, “Feasibility of 3D T1W Sequences in Contrast‐Material Enhanced MR Cisternography at 3T,” Turkish Journal of Medical Sciences 52, no. 6 (2022): 1943–1949.A. M. Sweeney, V. Plá, T. Du, et al., “In Vivo Imaging of Cerebrospinal Fluid Transport Through the Intact Mouse Skull Using Fluorescence Macroscopy,” Journal of Visualized Experiments no. 149 (2019): e59774, https://doi.org/10.3791/59774.
3972121720241225
2352-39641112024Dec24EBioMedicineEBioMedicineRobust, fully-automated assessment of cerebral perivascular spaces and white matter lesions: a multicentre MRI longitudinal study of their evolution and association with risk of dementia and accelerated brain atrophy.10552310552310.1016/j.ebiom.2024.105523S2352-3964(24)00559-0Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility.We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials. We analysed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1 ± 9.7 years-old, 56.6% women) from three publicly available observational studies on ageing and dementia (the Alzheimer's Disease Neuroimaging Initiative, the National Alzheimer's Coordinating Centre database, and the Open Access Series of Imaging Studies). Clinical and MRI data collected between 2004 and 2022 were analysed with consistent methods, controlling for confounding factors, and combined using mixed-effects models.Our fully-automated method for PVS assessment showed excellent inter-scanner reproducibility (intraclass correlation coefficients >0.8). Fewer PVS and larger PVS diameter at baseline predicted higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers differed significantly in participants without dementia who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants at low risk of dementia based on our PVS markers enhanced the power of the trial independently of Alzheimer's disease biomarkers.These robust cerebrovascular markers predict dementia risk and brain atrophy and may improve risk-stratification of patients, potentially reducing cost and increasing throughput of clinical trials to combat dementia.US National Institutes of Health.Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.BarisanoGiuseppeGDepartment of Neurosurgery, Stanford University, Stanford, CA, USA. Electronic address: barisano@stanford.edu.IvMichaelMDepartment of Radiology, Stanford University, Stanford, CA, USA.ChoupanJeiranJLaboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., New York, NY, USA.Hayden-GephartMelanieMDepartment of Neurosurgery, Stanford University, Stanford, CA, USA.Alzheimer’s Disease Neuroimaging InitiativeengJournal Article20241224
NetherlandsEBioMedicine1016470392352-3964IMAlzheimer’s diseaseDementiaGlymphatic systemPerivascular spacesSmall vessel diseaseWhite matter lesionsDeclaration of interests Giuseppe Barisano is listed as inventor on a patent application related to this work filed by Stanford University. The other authors declare that they have no competing interests. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Ageing, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.WeinerMichaelMAisenPaulPPetersenRonaldRJackClifford RCRJagustWilliamWTrojanowkiJohn QJQTogaArthur WAWBeckettLaurelLGreenRobert CRCSaykinAndrew JAJMorrisJohnJShawLeslie MLMLiuEnchiEMontineTomTThomasRonald GRGDonohueMichaelMWalterSarahSGessertDevonDSatherTamieTJiminezGusGHarveyDanielleDDonohueMichaelMBernsteinMatthewMFoxNickNThompsonPaulPSchuffNorbertNDeCarliCharlesCBorowskiBretBGunterJeffJSenjemMattMVemuriPrashanthiPJonesDavidDKantarciKejalKWardChadCKoeppeRobert ARAFosterNormNReimanEric MEMChenKeweiKMathisChetCLandauSusanSCairnsNigel JNJHouseholderErinEReinwaldLisa TaylorLTLeeVirginiaVKoreckaMagdalenaMFigurskiMichalMCrawfordKarenKNeuScottSForoudTatiana MTMPotkinStevenSShenLiLKelleyFaberFKimSungeunSNhoKwangsikKKachaturianZavenZFrankRichardRSnyderPeter JPJMolchanSusanSKayeJeffreyJQuinnJosephJLindBettyBCarterRainaRDolenSaraSSchneiderLon SLSPawluczykSoniaSBecceraMauricioMTeodoroLibertyLSpannBryan MBMBrewerJamesJVanderswagHelenHFleisherAdamAHeidebrinkJudith LJLLordJoanne LJLPetersenRonaldRMasonSara SSSAlbersColleen SCSKnopmanDavidDJohnsonKrisKDoodyRachelle SRSMeyerJavier VillanuevaJVChowdhuryMunirMRountreeSusanSDangMimiMSternYaakovYHonigLawrence SLSBellKaren LKLAncesBeauBMorrisJohn CJCCarrollMariaMLeonSueSHouseholderErinEMintunMark AMASchneiderStacySOliverAngelaAMarsonDanielDGriffithRandallRClarkDavidDGeld-MacherDavidDBrockingtonJohnJRobersonErikEGrossmanHillelHMitsisEffieELeyla deToledo-MorrellShahRaj CRCDuaraRanjanRVaronDanielDGreigMaria TMTRobertsPeggyPAlbertMarilynMOnyikeChiadiCD'AgostinoDanielDKielbStephanieSGalvinJames EJEPogorelecDana MDMCerboneBrittanyBMichelChristina ACARusinekHenryHde LeonMony JMJGlodzikLidiaLDe SantiSusanSDoraiswamyP MuraliPMPetrellaJeffrey RJRWongTerence ZTZArnoldSteven ESEKarlawishJason HJHWolkDavidDSmithCharles DCDJichaGregGHardyPeterPSinhaParthaPOatesElizabethEConradGaryGLopezOscar LOLOakleyMaryAnnMSimpsonDonna MDMPorsteinssonAnton PAPGoldsteinBonnie SBSMartinKimKMakinoKelly MKMIsmailM SaleemMSBrandConnieCMulnardRuth ARAThaiGabyGAdams OrtizCatherine McCMWomackKyleKMathewsDanaDQuicenoMaryMArrastiaRamon DiazRDKingRichardRWeinerMyronMCookKristen MartinKMDeVousMichaelMLeveyAllan IAILahJames JJJCellarJanet SJSBurnsJeffrey MJMAndersonHeather SHSSwerdlowRussell HRHApostolovaLianaLTingusKathleenKWooEllenESilvermanDaniel H SDHSLuPo HPHBartzokisGeorgeGGraff RadfordNeill RNRParfittFrancineFKendallTracyTJohnsonHeatherHFarlowMartin RMRHakeAnnMarieAMatthewsBrandy RBRHerringScottSHuntCynthiaCvan DyckChristopher HCHCarsonRichard EREMacAvoyMartha GMGChertkowHowardHBergmanHowardHHoseinChrisCBlackSandraSStefanovicBojanaBCaldwellCurtisCRobin HsiungGing-YuekGYFeldmanHowardHMudgeBenitaBAssalyMicheleMKerteszAndrewARogersJohnJTrostDickDBernickCharlesCMunicDonnaDKerwinDianaDMesulamMarek MarselMMLipowskiKristineKWuChuang KuoCKJohnsonNancyNSadowskyCarlCMartinezWalterWVillenaTeresaTTurnerRaymond ScottRSJohnsonKathleenKReynoldsBrigidBSperlingReisa ARAJohnsonKeith AKAMarshallGadGFreyMeghanMYesavageJeromeJTaylorJoy LJLLaneBartonBRosenAllysonATinklenbergJaredJSabbaghMarwan NMNBeldenChristine MCMJacobsonSandra ASASirrelSherye ASAKowallNeilNKillianyRonaldRBudsonAndrew EAENorbashAlexanderAJohnsonPatricia LynnPLObisesanThomas OTOWoldaySabaSAllardJoanneJLernerAlanAOgrockiPaulaPHudsonLeonLFletcherEvanECarmichaelOwenOOlichneyJohnJDeCarliCharlesCKitturSmitaSBorrieMichaelMLeeT YTYBarthaRobRJohnsonSterlingSAsthanaSanjaySCarlssonCynthia MCMPotkinSteven GSGPredaAdrianANguyenDanaDTariotPierrePFleisherAdamAReederStephanieSBatesVerniceVCapoteHoracioHRainkaMichelleMScharreDouglas WDWKatakiMariaMAdeliAnahitaAZimmermanEarl AEACelminsDzintraDBrownAlice DADPearlsonGodfrey DGDBlankKarenKAndersonKarenKSantulliRobert BRBKitzmillerTamar JTJSchwartzEben SESSinkKaycee MKMWilliamsonJeff DJDGargPradeepPWatkinsFranklinFOttBrian RBRQuerfurthHenryHTremontGeoffreyGSallowayStephenSMalloyPaulPCorreiaStephenSRosenHoward JHJMillerBruce LBLMintzerJacoboJSpicerKennethKBachmanDavidDFingerElizabethEPasternakStephenSRachinskyIrinaIRogersJohnJKerteszAndrewADrostDickDPomaraNunzioNHernandoRaymundoRSarraelAnteroASchultzSusan KSKBoles PontoLaura LLLShimHyungsubHSmithKaren ElizabethKERelkinNormanNChaingGloriaGRaudinLisaLSmithAmandaAFargherKristinKRajBalebail AshokBA
2024729202411320241210202412260202024122602020241225185aheadofprint3972121710.1016/j.ebiom.2024.105523S2352-3964(24)00559-0
3972053920241225
2589-004227122024Dec20iScienceiScienceDivergent brain solute clearance in rat models of cerebral amyloid angiopathy and Alzheimer's disease.11146311146311146310.1016/j.isci.2024.111463Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived. To fill this knowledge gap, we here implemented unbalanced rOMT analysis which allows for assessment of both influx and clearance. Dynamic influx/clearance brain maps were derived from rTg-DI rats with cerebral amyloid angiopathy (CAA) and TgSD-AD rats with Alzheimer's disease (AD). The rTg-DI rats with severe CAA disease exhibited abnormal influx/clearance kinetics, while TgSD-AD rats with a moderate Aβ plaque load exhibited normal transport suggesting that different Aβ lesions and their overall burden differentially impact glymphatic system function.© 2024 The Author(s).KoundalSunilSDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.ChenXinanXDepartment of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA.GurskyZacharyZDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.LeeHedokHDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.XuKaimingKDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA.LiangFengFDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA.XieZhongcongZDepartment of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA.XuFengFGeorge and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA.LinHung-MoHMDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.Van NostrandWilliam EWEGeorge and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA.GuXianfengXDepartment of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA.Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.ElkinRenaRDepartment of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA.TannenbaumAllenADepartment of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA.Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.BenvenisteHeleneHDepartment of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA.Department of Biomedical Engineering, Yale School of Medicine New Haven, New Haven, CT 06510, USA.engJournal Article20241123
United StatesiScience1017240382589-0042Biological sciencesNeuroscienceThe authors declare no competing financial interests.
20244182024752024112020241225621202412256202024122542520241123epublish39720539PMC1166707710.1016/j.isci.2024.111463S2589-0042(24)02690-7Alafuzoff I., Arzberger T., Al-Sarraj S., Bodi I., Bogdanovic N., Braak H., Bugiani O., Del-Tredici K., Ferrer I., Gelpi E., et al. Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe Consortium. Brain Pathol. 2008;18:484–496. doi: 10.1111/j.1750-3639.2008.00147.x.10.1111/j.1750-3639.2008.00147.xPMC265937718371174Braak H., Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging. 1995;16:271–284. doi: 10.1016/0197-4580(95)00021-6.10.1016/0197-4580(95)00021-67566337Thal D.R., Ghebremedhin E., Rüb U., Yamaguchi H., Del Tredici K., Braak H. Two types of sporadic cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 2002;61:282–293.11895043Peng W., Achariyar T.M., Li B., Liao Y., Mestre H., Hitomi E., Regan S., Kasper T., Peng S., Ding F., et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol. Dis. 2016;93:215–225. doi: 10.1016/j.nbd.2016.05.015.10.1016/j.nbd.2016.05.015PMC498091627234656Tarasoff-Conway J.M., Carare R.O., Osorio R.S., Glodzik L., Butler T., Fieremans E., Axel L., Rusinek H., Nicholson C., Zlokovic B.V., et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 2015;11:457–470. doi: 10.1038/nrneurol.2015.119.10.1038/nrneurol.2015.119PMC469457926195256Harrison I.F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., Ahmed Z., Fisher A., Meftah S., Murray T.K., et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain. 2020;143:2576–2593. doi: 10.1093/brain/awaa179.10.1093/brain/awaa179PMC744752132705145Ben-Nejma I.R.H., Keliris A.J., Vanreusel V., Ponsaerts P., Van der Linden A., Keliris G.A. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis. Alzheimer's Res. Ther. 2023;15:23. doi: 10.1186/s13195-023-01175-z.10.1186/s13195-023-01175-zPMC988394636707887Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M., Contarino C., Onengut-Gumuscu S., Farber E., Raper D., et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185–191. doi: 10.1038/s41586-018-0368-8.10.1038/s41586-018-0368-8PMC608514630046111Carare R.O., Bernardes-Silva M., Newman T.A., Page A.M., Nicoll J.A.R., Perry V.H., Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008;34:131–144. doi: 10.1111/j.1365-2990.2007.00926.x.10.1111/j.1365-2990.2007.00926.x18208483Weller R.O., Massey A., Kuo Y.M., Roher A.E. Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann. N. Y. Acad. Sci. 2000;903:110–117. doi: 10.1111/j.1749-6632.2000.tb06356.x.10.1111/j.1749-6632.2000.tb06356.x10818495Chen X., Liu X., Kounda S., Elkin R., Zhu X., Monte B., Xu F., Pedram M., Lee H., Kipnis J., et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nature Aging. 2022;2:214–233. doi: 10.1038/s43587-022-00181-4.10.1038/s43587-022-00181-4PMC953184136199752Bohr T., Hjorth P.G., Holst S.C., Hrabětová S., Kiviniemi V., Lilius T., Lundgaard I., Mardal K.A., Martens E.A., Mori Y., et al. The glymphatic system: Current understanding and modeling. iScience. 2022;25 doi: 10.1016/j.isci.2022.104987.10.1016/j.isci.2022.104987PMC946018636093063Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 2012;4 doi: 10.1126/scitranslmed.3003748.10.1126/scitranslmed.3003748PMC355127522896675Zhao L., Tannenbaum A., Bakker E.N.T.P., Benveniste H. Physiology of Glymphatic Solute Transport and Waste Clearance from the Brain. Physiology. 2022;37:349–362. doi: 10.1152/physiol.00015.2022.10.1152/physiol.00015.2022PMC955057435881783Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015;212:991–999. doi: 10.1084/jem.20142290.10.1084/jem.20142290PMC449341826077718Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. doi: 10.1038/nature14432.10.1038/nature14432PMC450623426030524Thomas J.L., Benveniste H. CSF-to-dura gateways. J. Exp. Med. 2023;220 doi: 10.1084/jem.20221719.10.1084/jem.20221719PMC972985036472584Jacob L., de Brito Neto J., Lenck S., Corcy C., Benbelkacem F., Geraldo L.H., Xu Y., Thomas J.M., El Kamouh M.R., Spajer M., et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med. 2022;219 doi: 10.1084/jem.20220035.10.1084/jem.20220035PMC925362135776089Kress B.T., Iliff J.J., Xia M., Wang M., Wei H.S., Zeppenfeld D., Xie L., Kang H., Xu Q., Liew J.A., et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 2014;76:845–861. doi: 10.1002/ana.24271.10.1002/ana.24271PMC424536225204284Mestre H., Hablitz L.M., Xavier A.L., Feng W., Zou W., Pu T., Monai H., Murlidharan G., Castellanos Rivera R.M., Simon M.J., et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. 2018;7 doi: 10.7554/eLife.40070.10.7554/eLife.40070PMC630785530561329Benveniste H., Lee H., Ozturk B., Chen X., Koundal S., Vaska P., Tannenbaum A., Volkow N.D. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience. 2021;474:63–79. doi: 10.1016/j.neuroscience.2020.11.014.10.1016/j.neuroscience.2020.11.014PMC814948233248153Iliff J.J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 2013;123:1299–1309. doi: 10.1172/JCI67677.10.1172/JCI67677PMC358215023434588Ratner V., Gao Y., Lee H., Elkin R., Nedergaard M., Benveniste H., Tannenbaum A. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neuroimage. 2017;152:530–537. doi: 10.1016/j.neuroimage.2017.03.021.10.1016/j.neuroimage.2017.03.021PMC549008128323163Elkin R., Nadeem S., Haber E., Steklova K., Lee H., Benveniste H., Tannenbaum A. GlymphVIS: Visualizing glymphatic transport pathways using regularized optimal transport. Med. Image Comput. Comput. Assist. Interv. 2018;11070:844–852. doi: 10.1007/978-3-030-00928-1_95.10.1007/978-3-030-00928-1_95PMC642614130906935Koundal S., Elkin R., Nadeem S., Xue Y., Constantinou S., Sanggaard S., Liu X., Monte B., Xu F., Van Nostrand W., et al. Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System. Sci. Rep. 2020;10:1990. doi: 10.1038/s41598-020-59045-9.10.1038/s41598-020-59045-9PMC700498632029859Chen X., Liu X., Koundal S., Elkin R., Zhu X., Monte B., Xu F., Dai F., Pedram M., Lee H., et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nat. Aging. 2022;2:214–223. doi: 10.1038/s43587-022-00181-4.10.1038/s43587-022-00181-4PMC953184136199752Chen X., Benveniste H., Tannenbaum A.R. Unbalanced regularized optimal mass transport with applications to fluid flows in the brain. Sci. Rep. 2024;14:1111. doi: 10.1038/s41598-023-50874-y.10.1038/s41598-023-50874-yPMC1078457438212659Eide P.K., Vinje V., Pripp A.H., Mardal K.A., Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain. 2021;144:863–874. doi: 10.1093/brain/awaa443.10.1093/brain/awaa44333829232Ringstad G., Valnes L.M., Dale A.M., Pripp A.H., Vatnehol S.A.S., Emblem K.E., Mardal K.A., Eide P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3 doi: 10.1172/jci.insight.121537.10.1172/jci.insight.121537PMC612451829997300Davis J., Xu F., Hatfield J., Lee H., Hoos M.D., Popescu D., Crooks E., Kim R., Smith S.O., Robinson J.K., et al. A Novel Transgenic Rat Model of Robust Cerebral Microvascular Amyloid with Prominent Vasculopathy. Am. J. Pathol. 2018;188:2877–2889. doi: 10.1016/j.ajpath.2018.07.030.10.1016/j.ajpath.2018.07.030PMC633426730446159Zhu X., Hatfield J., Sullivan J.K., Xu F., Van Nostrand W.E. Robust neuroinflammation and perivascular pathology in rTg-DI rats, a novel model of microvascular cerebral amyloid angiopathy. J. Neuroinflammation. 2020;17:78. doi: 10.1186/s12974-020-01755-y.10.1186/s12974-020-01755-yPMC705509132127016Lee H., Xu F., Liu X., Koundal S., Zhu X., Davis J., Yanez D., Schrader J., Stanisavljevic A., Rothman D.L., et al. Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy. J. Cerebr. Blood Flow Metabol. 2021;41:1103–1118. doi: 10.1177/0271678X20944226.10.1177/0271678X20944226PMC805471632791876Schrader J.M., Stanisavljevic A., Xu F., Van Nostrand W.E. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J. Neuropathol. Exp. Neurol. 2022;81:731–745. doi: 10.1093/jnen/nlac057.10.1093/jnen/nlac057PMC980390935856898Schrader J.M., Xu F., Lee H., Barlock B., Benveniste H., Van Nostrand W.E. Emergent White Matter Degeneration in the rTg-DI Rat Model of Cerebral Amyloid Angiopathy Exhibits Unique Proteomic Changes. Am. J. Pathol. 2022;192:426–440. doi: 10.1016/j.ajpath.2021.11.010.10.1016/j.ajpath.2021.11.010PMC889542434896071Popescu D.L., Van Nostrand W.E., Robinson J.K. Longitudinal Cognitive Decline in a Novel Rodent Model of Cerebral Amyloid Angiopathy Type-1. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21072348.10.3390/ijms21072348PMC717746932231123Schrader J.M., Xu F., Agostinucci K.J., DaSilva N.A., Van Nostrand W.E. Longitudinal markers of cerebral amyloid angiopathy and related inflammation in rTg-DI rats. Sci. Rep. 2024;14:8441. doi: 10.1038/s41598-024-59013-7.10.1038/s41598-024-59013-7PMC1100666838600214Ozturk B., Koundal S., Al Bizri E., Chen X., Gursky Z., Dai F., Lim A., Heerdt P., Kipnis J., Tannenbaum A., et al. Continuous positive airway pressure increases CSF flow and glymphatic transport. JCI Insight. 2023;8 doi: 10.1172/jci.insight.170270.10.1172/jci.insight.170270PMC1037123137159262Hablitz L.M., Plá V., Giannetto M., Vinitsky H.S., Stæger F.F., Metcalfe T., Nguyen R., Benrais A., Nedergaard M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020;11:4411. doi: 10.1038/s41467-020-18115-2.10.1038/s41467-020-18115-2PMC746815232879313Eide P.K., Ringstad G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol. Open. 2015;4 doi: 10.1177/2058460115609635.10.1177/2058460115609635PMC465220826634147Cohen R.M., Rezai-Zadeh K., Weitz T.M., Rentsendorj A., Gate D., Spivak I., Bholat Y., Vasilevko V., Glabe C.G., Breunig J.J., et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J. Neurosci. 2013;33:6245–6256. doi: 10.1523/JNEUROSCI.3672-12.2013.10.1523/JNEUROSCI.3672-12.2013PMC372014223575824Benveniste H., Einstein G., Kim K.R., Hulette C., Johnson G.A. Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc. Natl. Acad. Sci. USA. 1999;96:14079–14084. doi: 10.1073/pnas.96.24.14079.10.1073/pnas.96.24.14079PMC2419310570201Liang F., Baldyga K., Quan Q., Khatri A., Choi S., Wiener-Kronish J., Akeju O., Westover M.B., Cody K., Shen Y., et al. Preoperative Plasma Tau-PT217 and Tau-PT181 Are Associated With Postoperative Delirium. Ann. Surg. 2023;277:e1232–e1238. doi: 10.1097/SLA.0000000000005487.10.1097/SLA.0000000000005487PMC987594335794069Cserr H.F., Cooper D.N., Suri P.K., Patlak C.S. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 1981;240:F319–F328. doi: 10.1152/ajprenal.1981.240.4.F319.10.1152/ajprenal.1981.240.4.F3197223889Szentistvanyi I., Patlak C.S., Ellis R.A., Cserr H.F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 1984;246:F835–F844. doi: 10.1152/ajprenal.1984.246.6.F835.10.1152/ajprenal.1984.246.6.F8356742132Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., Logan J., Nedergaard M., Benveniste H. The Effect of Body Posture on Brain Glymphatic Transport. J. Neurosci. 2015;35:11034–11044. doi: 10.1523/JNEUROSCI.1625-15.2015.10.1523/JNEUROSCI.1625-15.2015PMC452497426245965Benveniste H., Lee H., Ding F., Sun Q., Al-Bizri E., Makaryus R., Probst S., Nedergaard M., Stein E.A., Lu H. Anesthesia with Dexmedetomidine and Low-dose Isoflurane Increases Solute Transport via the Glymphatic Pathway in Rat Brain When Compared with High-dose Isoflurane. Anesthesiology. 2017;127:976–988. doi: 10.1097/Aln.0000000000001888.10.1097/Aln.0000000000001888PMC568587128938276Pla V., Bork P., Harnpramukkul A., Olveda G., Ladron-de-Guevara A., Giannetto M.J., Hussain R., Wang W., Kelley D.H., Hablitz L.M., Nedergaard M. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 2022;40 doi: 10.1016/j.celrep.2022.111320.10.1016/j.celrep.2022.11132036103828Ray L., Iliff J.J., Heys J.J. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS. 2019;16:6. doi: 10.1186/s12987-019-0126-9.10.1186/s12987-019-0126-9PMC640218230836968Bakker E.N.T.P., Naessens D.M.P., VanBavel E. Paravascular spaces: entry to or exit from the brain? Exp. Physiol. 2019;104:1013–1017. doi: 10.1113/EP087424.10.1113/EP087424PMC661814930582766Davson H. Review lecture. The blood-brain barrier. J. Physiol. 1976;255:1–28. doi: 10.1113/jphysiol.1976.sp011267.10.1113/jphysiol.1976.sp011267PMC13092321255511Aktas G., Kollmeier J.M., Joseph A.A., Merboldt K.D., Ludwig H.C., Gärtner J., Frahm J., Dreha-Kulaczewski S. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids Barriers CNS. 2019;16:10. doi: 10.1186/s12987-019-0130-0.10.1186/s12987-019-0130-0PMC644993730947716Dreha-Kulaczewski S., Joseph A.A., Merboldt K.D., Ludwig H.C., Gärtner J., Frahm J. Inspiration is the major regulator of human CSF flow. J. Neurosci. 2015;35:2485–2491. doi: 10.1523/JNEUROSCI.3246-14.2015.10.1523/JNEUROSCI.3246-14.2015PMC660560825673843Chan S.T., Evans K.C., Song T.Y., Selb J., van der Kouwe A., Rosen B.R., Zheng Y.P., Ahn A.C., Kwong K.K. Dynamic brain-body coupling of breath-by-breath O2-CO2 exchange ratio with resting state cerebral hemodynamic fluctuations. PLoS One. 2020;15 doi: 10.1371/journal.pone.0238946.10.1371/journal.pone.0238946PMC750558932956397Ma Q., Ineichen B.V., Detmar M., Proulx S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 2017;8:1434. doi: 10.1038/s41467-017-01484-6.10.1038/s41467-017-01484-6PMC568155829127332Ahn J.H., Cho H., Kim J.H., Kim S.H., Ham J.S., Park I., Suh S.H., Hong S.P., Song J.H., Hong Y.K., et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–66. doi: 10.1038/s41586-019-1419-5.10.1038/s41586-019-1419-531341278Yoon J.H., Jin H., Kim H.J., Hong S.P., Yang M.J., Ahn J.H., Kim Y.C., Seo J., Lee Y., McDonald D.M., et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature. 2024;625:768–777. doi: 10.1038/s41586-023-06899-4.10.1038/s41586-023-06899-4PMC1080807538200313Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013;340:1529–1530. doi: 10.1126/science.1240514.10.1126/science.1240514PMC374983923812703Nedergaard M., Goldman S.A. Brain Drain. Sci. Am. 2016;314:44–49. doi: 10.1038/scientificamerican0316-44.10.1038/scientificamerican0316-44PMC534744327066643Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–2705. doi: 10.1093/brain/awx191.10.1093/brain/awx191PMC584114928969373Eide P.K., Valnes L.M., Pripp A.H., Mardal K.A., Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J. Cerebr. Blood Flow Metabol. 2020;40:1849–1858. doi: 10.1177/0271678X19874790.10.1177/0271678X19874790PMC744655831495299van Veluw S.J., Hou S.S., Calvo-Rodriguez M., Arbel-Ornath M., Snyder A.C., Frosch M.P., Greenberg S.M., Bacskai B.J. Vasomotion as a Driving Force for Paravascular Clearance in the Awake Mouse Brain. Neuron. 2020;105:549–561.e5. doi: 10.1016/j.neuron.2019.10.033.10.1016/j.neuron.2019.10.033PMC702831631810839Garcia-Alloza M., Robbins E.M., Zhang-Nunes S.X., Purcell S.M., Betensky R.A., Raju S., Prada C., Greenberg S.M., Bacskai B.J., Frosch M.P. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis. 2006;24:516–524. doi: 10.1016/j.nbd.2006.08.017.10.1016/j.nbd.2006.08.01717029828Vinje V., Zapf B., Ringstad G., Eide P.K., Rognes M.E., Mardal K.A. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS. 2023;20:62. doi: 10.1186/s12987-023-00459-8.10.1186/s12987-023-00459-8PMC1043955937596635Jakel L., De Kort A.M., Klijn C.J.M., Schreuder F., Verbeek M.M. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement. 2022;18:10–28. doi: 10.1002/alz.12366.10.1002/alz.12366PMC929064334057813Tustison N.J., Avants B.B., Cook P.A., Zheng Y., Egan A., Yushkevich P.A., Gee J.C. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imag. 2010;29:1310–1320. doi: 10.1109/TMI.2010.2046908.10.1109/TMI.2010.2046908PMC307185520378467Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020;16:242. doi: 10.1186/s12917-020-02451-y.10.1186/s12917-020-02451-yPMC735928632660541Rathi Y., Olver P., Sapiro G., Tannenbaum A. Affine invariant surface evolutions for 3D image segmentation. Proc. SPIE. 2006;6064:606401. doi: 10.1117/12.640282.10.1117/12.640282Johnson G.A., Calabrese E., Badea A., Paxinos G., Watson C. A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage. 2012;62:1848–1856. doi: 10.1016/j.neuroimage.2012.05.041.10.1016/j.neuroimage.2012.05.041PMC340882122634863Johnson G.A., Cofer G.P., Gewalt S.L., Hedlund L.W. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology. 2002;222:789–793. doi: 10.1148/radiol.2223010531.10.1148/radiol.222301053111867802Davis J., Xu F., Miao J., Previti M.L., Romanov G., Ziegler K., Van Nostrand W.E. Deficient cerebral clearance of vasculotropic mutant Dutch/Iowa Double A beta in human A betaPP transgenic mice. Neurobiol. Aging. 2006;27:946–954. doi: 10.1016/j.neurobiolaging.2005.05.031.10.1016/j.neurobiolaging.2005.05.03116105708Xu F., Grande A.M., Robinson J.K., Previti M.L., Vasek M., Davis J., Van Nostrand W.E. Early-onset subicular microvascular amyloid and neuroinflammation correlate with behavioral deficits in vasculotropic mutant amyloid beta-protein precursor transgenic mice. Neuroscience. 2007;146:98–107. doi: 10.1016/j.neuroscience.2007.01.043.10.1016/j.neuroscience.2007.01.043PMC194933817331655Jung S.S., Van Nostrand W.E. Abeta does not induce oxidative stress in human cerebrovascular smooth muscle cells. Neuroreport. 2002;13:1309–1312.12151793McKay T.B., Qu J., Liang F., Mueller A., Wiener-Kronish J., Xie Z., Akeju O. Tau as a serum biomarker of delirium after major cardiac surgery: a single centre case-control study. Br. J. Anaesth. 2022;129:e13–e16. doi: 10.1016/j.bja.2022.04.002.10.1016/j.bja.2022.04.002PMC942891435465951Barriere D.A., Magalhaes R., Novais A., Marques P., Selingue E., Geffroy F., Marques F., Cerqueira J., Sousa J.C., Boumezbeur F., et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat. Commun. 2019;10:5699. doi: 10.1038/s41467-019-13575-7.10.1038/s41467-019-13575-7PMC691109731836716Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-17204-5.10.1038/s41598-017-17204-5PMC571511029203879Paxinos G., Watson C. 3rd Edition. Academic Press; 1997. The Rat Brain in Stereotaxic Coordinates.
397195742024122420241224
2045-81182112024Dec24Fluids and barriers of the CNSFluids Barriers CNSBOLD-CSF dynamics assessed using real-time phase contrast CSF flow interleaved with cortical BOLD MRI.10710710710.1186/s12987-024-00607-8Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex. However, this technique is not quantitative, only captures unidirectional flow and is sensitive to B0-fluctuations. Real-time phase contrast (pcCSF) instead measures CSF flow dynamics in a fast, quantitative, bidirectional and B0-insensitive manner, but lacks information on hemodynamic brain oscillations. In this study we propose to combine the strengths of both sequences by interleaving real-time phase contrast with a cortical BOLD scan, thereby enabling the quantification of the interaction between CSF flow and cortical BOLD.Two experiments were performed. First, we compared the CSF flow measured using real-time phase contrast (pcCSF) with the inflow-sensitized BOLD (iCSF) measurements by interleaving both techniques at the repetition level and planning them at the same location. Next, we compared the BOLD-CSF coupling obtained using the novel pcCSF interleaved with cortical BOLD to the coupling obtained with the original iCSF. To time-lock the CSF fluctuations, participants were instructed to perform slow, abdominal paced breathing.pcCSF captures bidirectional CSF dynamics with a more pronounced in- and outflow curve than the original iCSF method. With the pcCSF method, the BOLD-CSF coupling was stronger (mean cross-correlation peak increase = 0.22, p = .008) and with a 1.9 s shorter temporal lag (p = .016), as compared to using the original iCSF technique.In this study, we introduce a new method to study the coupling of CSF flow measured in the fourth ventricle to cortical BOLD fluctuations. In contrast to the original approach, the use of phase contrast MRI to measure CSF flow provides a quantitative in- and outflow curve, and improved BOLD-CSF coupling metrics.© 2024. The Author(s).RoefsEmiel C AECAC.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. e.c.a.roefs@lumc.nl.EilingIngmarIC.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. i.eiling@lumc.nl.de BresserJeroenJDepartment of Radiology, Leiden University Medical Center, Leiden, The Netherlands.van OschMatthias J PMJPC.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.HirschlerLydianeLC.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. l.hirschler@lumc.nl.engJournal Article20241224
EnglandFluids Barriers CNS1015531572045-8118S88TT14065OxygenIMHumansMagnetic Resonance ImagingmethodsMaleAdultCerebrospinal Fluidphysiologydiagnostic imagingCerebral Cortexdiagnostic imagingphysiologyblood supplyFemaleYoung AdultOxygenbloodBoldBold-CSF couplingBrain clearanceCSF flowGlymphatic systemReal-time phase contrastDeclarations. Ethics approval and consent to participate: The experimental protocol was approved by the ethics committee of the Leiden University Medical Center under authorization number P07.096 and conducted according to the principles of the 2013 Declaration of Helsinki. All participants signed informed consent prior to participation. Consent of publication: Not applicable. Competing interests: The authors declare no competing interests.
202482320241210202412250212024122502020241224232420241224epublish3971957410.1186/s12987-024-00607-810.1186/s12987-024-00607-8PMC11669233Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022;102(2):1025–151.PMC889715433949874Williams SD, Setzer B, Fultz NE, Valdiviezo Z, Tacugue N, Diamandis Z, et al. Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans. PLoS Biol. 2023;21(3):e3002035.PMC1006258536996009Van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron. 2020;105(3):549–e615.PMC702831631810839Holstein-Rønsbo S, Gan Y, Giannetto MJ, Rasmussen MK, Sigurdsson B, Beinlich FRM, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat Neurosci. 2023;26(6):1042–53.PMC1050015937264158Mokri B. The Monro–Kellie hypothesis. Neurology. 2001;56(12):1746–8.11425944Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628–31.PMC730958931672896Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7.PMC388019024136970Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, et al. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase‐contrast MRI. J Magn Reson Imaging. 2017;46(2):431–9.28152239Töger J, Andersen M, Haglund O, Kylkilahti TM, Lundgaard I, Markenroth Bloch K. Real-time imaging of respiratory effects on cerebrospinal fluid flow in small diameter passageways. Magn Reson Med. 2022;88(2):770–86.PMC932421935403247Laganà MM, Di Tella S, Ferrari F, Pelizzari L, Cazzoli M, Alperin N et al. Blood and cerebrospinal fluid flow oscillations measured with real-time phase-contrast MRI: breathing mode matters. Fluids Barriers CNS. 2022;19(1).PMC974930536517859Liu P, Owashi K, Monnier H, Metanbou S, Capel C, Balédent O. Validating the accuracy of real-time phase-contrast MRI and quantifying the effects of free breathing on cerebrospinal fluid dynamics. Fluids Barriers CNS. 2024;21(1).PMC1092177238454518Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four‐dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR Biomed. 2024;37(7).PMC1116295338124351Henningsson M, Mens G, Koken P, Smink J, Botnar RM. A new framework for interleaved scanning in cardiovascular MR: Application to image-based respiratory motion correction in coronary MR angiography. Magn Reson Med. 2015;73(2):692–6.24639003Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J. Inspiration is the major regulator of human CSF flow. J Neurosci. 2015;35(6):2485–91.PMC660560825673843Chang C, Glover GH. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI. NeuroImage. 2009;47(4):1381–93.PMC272128119393322Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782–90.21979382Fischl B, FreeSurfer. NeuroImage. 2012;62(2):774–81.PMC368547622248573Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.8812068Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: the analysis of functional brain images. Elsevier; 2011.Vucevic D, Malis V, Bae WC, Ota H, Oshio K, McDonald MA, et al. Visualization of cerebrospinal fluid outflow and egress along the nerve roots of the lumbar spine. Bioengineering. 2024;11(7):708.PMC1127371439061790Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57.PMC800449633427948Peters K, Weiss K, Maintz D, Giese D. Influence of respiration-induced B0 variations in real‐time phase‐contrast echo planar imaging of the cervical cerebrospinal fluid. Magn Reson Med. 2019;82(2):647–57.30957288Pulseq [Internet]. Pulseq: Open-source pulse sequences. 2024 [cited 2024 December 19]. Available from: https://pulseq.github.io/gammaSTAR [Internet]. Generalized MRI. Pulse Sequence Programming. 2024 [cited 2024 December 19]. Available from: https://gamma-star.mevis.fraunhofer.de/#/
trying2...
Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. | LitMetric

Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793139PMC
http://dx.doi.org/10.3389/fnagi.2021.788519DOI Listing

Publication Analysis

Top Keywords

glymphatic function
12
cognitive impairment
12
impaired glymphatic
8
vascular cognitive
8
carotid stenosis
8
tracer influx
8
vascular pulsation
8
bcas
6
impaired
5
pulsation
4

Similar Publications

Cognitive disorders: potential astrocyte-based mechanism.

Brain Res Bull

December 2024

Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address:

Cognitive disorders are a common clinical manifestation, including a deterioration in the patient's memory ability, attention, executive power, language, and other functions. The contributing factors of cognitive disorders are numerous and diverse in nature, including organic diseases and other mental disorders. Neurodegenerative diseases are a common type of organic disease related to the pathology of neuronal death and disruption of glial cell balance, ultimately accompanied with cognitive impairment.

View Article and Find Full Text PDF

Purpose: We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.

Materials And Methods: Twenty-one rabbits were included in the study.

View Article and Find Full Text PDF

Background: Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility.

Methods: We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials.

View Article and Find Full Text PDF

Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!