trying...
35095472 2023 07 15 1663-4365 13 2021 Frontiers in aging neuroscience Front Aging Neurosci Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. 788519 788519 788519 10.3389/fnagi.2021.788519 Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI. Copyright © 2022 Li, Kitamura, Beverley, Koudelka, Duncombe, Lennen, Jansen, Marshall, Platt, Wiegand, Carare, Kalaria, Iliff and Horsburgh. Li Mosi M Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Edinburgh Medical School, UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom. Kitamura Akihiro A Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Department of Neurology, Shiga University of Medical Science, Otsu, Japan. Beverley Joshua J Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Koudelka Juraj J Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Duncombe Jessica J Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Lennen Ross R Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom. Jansen Maurits A MA Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom. Marshall Ian I Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Platt Bettina B School of Medicine, Medical Sciences and Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen, United Kingdom. Wiegand Ulrich K UK Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. Carare Roxana O RO Faculty of Medicine, University of Southampton, Southampton, United Kingdom. Kalaria Rajesh N RN Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom. Iliff Jeffrey J JJ VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, United States. Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, United States. Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States. Horsburgh Karen K Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom. eng MR/K015710/1 MRC_ Medical Research Council United Kingdom R01 AG054456 AG NIA NIH HHS United States Journal Article 2022 01 13 Switzerland Front Aging Neurosci 101525824 1663-4365 amyloid-β (Aβ) carotid stenosis cerebral amyloid angiopathy (CAA) glymphatic function vascular cognitive impairment vascular pulsation The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. 2021 10 2 2021 12 7 2022 1 31 5 55 2022 2 1 6 0 2022 2 1 6 1 2021 1 1 epublish 35095472 PMC8793139 10.3389/fnagi.2021.788519 Alhusaini S., Karama S., Nguyen T. V., Thiel A., Bernhardt B. C., Cox S. R., et al. (2018). Association between carotid atheroma and cerebral cortex structure at age 73 years. Ann. Neurol. 84 576–587. 10.1002/ana.25324 10.1002/ana.25324 PMC6328248 30179274 Alosco M. L., Brickman A. M., Spitznagel M. B., Garcia S. L., Narkhede A., Griffith E. Y., et al. (2013). Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest. Heart Fail 19 E29–E34. 10.1111/chf.12025 10.1111/chf.12025 PMC3692594 23517434 Alsop D. C., Dai W., Grossman M., Detre J. A. (2010). Arterial spin labeling blood flow MRI: its role in the early characterization of Alzheimer’s disease. J. Alzheimers Dis. 20 871–880. 10.3233/JAD-2010-091699 10.3233/JAD-2010-091699 PMC3643892 20413865 Aribisala B. S., Wiseman S., Morris Z., Valdes-Hernandez M. C., Royle N. A., Maniega S. M., et al. (2014b). Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke 45 605–607. 10.1161/STROKEAHA.113.004059 10.1161/STROKEAHA.113.004059 PMC3906539 24399375 Aribisala B. S., Morris Z., Eadie E., Thomas A., Gow A., Valdes Hernandez M. C., et al. (2014a). Blood pressure, internal carotid artery flow parameters, and age-related white matter hyperintensities. Hypertension 63 1011–1018. 10.1161/HYPERTENSIONAHA.113.02735 10.1161/HYPERTENSIONAHA.113.02735 PMC3984108 24470459 Arvanitakis Z., Capuano A. W., Leurgans S. E., Bennett D. A., Schneider J. A. (2016). Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 15 934–943. 10.1016/S1474-4422(16)30029-1 10.1016/S1474-4422(16)30029-1 PMC4969105 27312738 Balestrini S., Perozzi C., Altamura C., Vernieri F., Luzzi S., Bartolini M., et al. (2013). Severe carotid stenosis and impaired cerebral hemodynamics can influence cognitive deterioration. Neurology 80 2145–2150. 10.1212/WNL.0b013e318295d71a 10.1212/WNL.0b013e318295d71a 23624562 Barker R., Ashby E. L., Wellington D., Barrow V. M., Palmer J. C., Kehoe P. G., et al. (2014). Pathophysiology of white matter perfusion in Alzheimer’s disease and vascular dementia. Brain 137 1524–1532. 10.1093/brain/awu040 10.1093/brain/awu040 PMC3999715 24618270 Benveniste H., Nedergaard M. (2021). Cerebral small vessel disease: a glymphopathy? Curr. Opin. Neurobiol. 72 15–21. 10.1016/j.conb.2021.07.006 10.1016/j.conb.2021.07.006 34407477 Chao L. L., Buckley S. T., Kornak J., Schuff N., Madison C., Yaffe K., et al. (2010). ASL perfusion MRI predicts cognitive decline and conversion from MCI to dementia. Alzheimer Dis. Assoc. Disord. 24 19–27. 10.1097/WAD.0b013e3181b4f736 10.1097/WAD.0b013e3181b4f736 PMC2865220 20220321 Cheng H. L., Lin C. J., Soong B. W., Wang P. N., Chang F. C., Wu Y. T., et al. (2012). Impairments in cognitive function and brain connectivity in severe asymptomatic carotid stenosis. Stroke 43 2567–2573. 10.1161/STROKEAHA.111.645614 10.1161/STROKEAHA.111.645614 22935402 Coltman R., Spain A., Tsenkina Y., Fowler J. H., Smith J., Scullion G., et al. (2011). Selective white matter pathology induces a specific impairment in spatial working memory. Neurobiol. Aging 32 2323.e7–e12. 10.1016/j.neurobiolaging.2010.09.005 10.1016/j.neurobiolaging.2010.09.005 20961660 De Jong G. I., De Vos R. A., Steur E. N., Luiten P. G. (1997). Cerebrovascular hypoperfusion: a risk factor for Alzheimer’s disease? Animal model and postmortem human studies. Ann. N. Y. Acad. Sci. 826 56–74. 10.1111/j.1749-6632.1997.tb48461.x 10.1111/j.1749-6632.1997.tb48461.x 9329681 de la Torre J. C. (2000a). Cerebral hypoperfusion, capillary degeneration, and development of Alzheimer disease. Alzheimer Dis. Assoc. Disord. 14(Suppl. 1) S72–S81. 10.1097/00002093-200000001-00012 10.1097/00002093-200000001-00012 10850734 de la Torre J. C. (2000b). Critically attained threshold of cerebral hypoperfusion: can it cause Alzheimer’s disease? Ann. N. Y Acad. Sci. 903 424–436. 10.1111/j.1749-6632.2000.tb06394.x 10.1111/j.1749-6632.2000.tb06394.x 10818533 de la Torre J. C. (2000c). Impaired cerebromicrovascular perfusion. Summary of evidence in support of its causality in Alzheimer’s disease. Ann. N. Y. Acad. Sci. 924 136–152. 10.1111/j.1749-6632.2000.tb05572.x 10.1111/j.1749-6632.2000.tb05572.x 11193790 de la Torre J. C. (2012b). Cerebral Hemodynamics and Vascular Risk Factors: setting the stage for Alzheimer’s disease. J. Alzheimers Dis. 32 553–567. 10.3233/JAD-2012-120793 10.3233/JAD-2012-120793 22842871 de la Torre J. C. (2012a). Cardiovascular risk factors promote brain hypoperfusion leading to cognitive decline and dementia. Cardiovasc. Psychiatry Neurol. 2012:367516. 10.1155/2012/367516 10.1155/2012/367516 PMC3518077 23243502 Dichgans M., Leys D. (2017). Vascular cognitive impairment. Circ. Res. 120 573–591. 28154105 Ding J., Mitchell G. F., Bots M. L., Sigurdsson S., Harris T. B., Garcia M., et al. (2015). Carotid arterial stiffness and risk of incident cerebral microbleeds in older people: the Age, Gene/Environment Susceptibility (AGES)-Reykjavik study. Arterioscler. Thromb. Vasc. Biol. 35 1889–1895. 10.1161/ATVBAHA.115.305451 10.1161/ATVBAHA.115.305451 PMC4514556 26112009 Ding J., Sigurethsson S., Jonsson P. V., Eiriksdottir G., Charidimou A., Lopez O. L., et al. (2017). Large perivascular spaces visible on magnetic resonance imaging, cerebral small vessel disease progression, and risk of dementia: the age, gene/environment susceptibility-reykjavik study. JAMA Neurol. 74 1105–1112. 10.1001/jamaneurol.2017.1397 10.1001/jamaneurol.2017.1397 PMC5695230 28715552 Doubal F. N., Maclullich A. M., Ferguson K. J., Dennis M. S., Wardlaw J. M. (2010). Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 41 450–454. 10.1161/STROKEAHA.109.564914 10.1161/STROKEAHA.109.564914 20056930 Duncombe J., Kitamura A., Hase Y., Ihara M., Kalaria R. N., Horsburgh K. (2017a). Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. (Lond.) 131 2451–2468. 10.1042/CS20160727 10.1042/CS20160727 28963120 Duncombe J., Lennen R. J., Jansen M. A., Marshall I., Wardlaw J. M., Horsburgh K. (2017b). Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol. Appl. Neurobiol. 43 477–491. 10.1111/nan.12375 10.1111/nan.12375 28039950 Esiri M. M., Nagy Z., Smith M. Z., Barnetson L., Smith A. D. (1999). Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 354 919–920. 10.1016/S0140-6736(99)02355-7 10.1016/S0140-6736(99)02355-7 10489957 Fowler J. H., Mcqueen J., Holland P. R., Manso Y., Marangoni M., Scott F., et al. (2017). Dimethyl fumarate improves white matter function following severe hypoperfusion: involvement of microglia/macrophages and inflammatory mediators. J. Cereb. Blood Flow Metab. 38 1354–1370. 10.1177/0271678X17713105 10.1177/0271678X17713105 PMC6077928 28606007 Gaberel T., Gakuba C., Goulay R., Martinez De Lizarrondo S., Hanouz J. L., Emery E., et al. (2014). Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45 3092–3096. 10.1161/STROKEAHA.114.006617 10.1161/STROKEAHA.114.006617 25190438 Gorelick P. B., Scuteri A., Black S. E., Decarli C., Greenberg S. M., Iadecola C., et al. (2011). Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 42 2672–2713. 10.1161/str.0b013e3182299496 10.1161/str.0b013e3182299496 PMC3778669 21778438 Gottesman R. F., Schneider A. L., Zhou Y., Coresh J., Green E., Gupta N., et al. (2017). Association between midlife vascular risk factors and estimated brain amyloid deposition. JAMA 317 1443–1450. 10.1001/jama.2017.3090 10.1001/jama.2017.3090 PMC5921896 28399252 Gupta A., Iadecola C. (2015). Impaired Abeta clearance: a potential link between atherosclerosis and Alzheimer’s disease. Front. Aging Neurosci. 7:115. 10.3389/fnagi.2015.00115 10.3389/fnagi.2015.00115 PMC4468824 26136682 Hachinski V., Munoz D. G. (1997). Cerebrovascular pathology in Alzheimer’s disease: cause, effect or epiphenomenon? Ann. N. Y. Acad. Sci. 826 1–6. 10.1111/j.1749-6632.1997.tb48456.x 10.1111/j.1749-6632.1997.tb48456.x 9329676 Holland P. R., Bastin M. E., Jansen M. A., Merrifield G. D., Coltman R. B., Scott F., et al. (2011). MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol. Aging 32:2325.e1–6. 10.1016/j.neurobiolaging.2010.11.009 10.1016/j.neurobiolaging.2010.11.009 21194797 Holland P. R., Searcy J. L., Salvadores N., Scullion G., Chen G., Lawson G., et al. (2015). Gliovascular disruption and cognitive deficits in a mouse model with features of small vessel disease. J. Cereb. Blood Flow Metab. 35 1005–1014. 10.1038/jcbfm.2015.12 10.1038/jcbfm.2015.12 PMC4640247 25669904 Huang K. L., Lin K. J., Ho M. Y., Chang Y. J., Chang C. H., Wey S. P., et al. (2012). Amyloid deposition after cerebral hypoperfusion: evidenced on [F-18]AV-45 positron emission tomography. J. Neurol. Sci. 319 124–129. 10.1016/j.jns.2012.04.014 10.1016/j.jns.2012.04.014 22572706 Hughes T. M., Kuller L. H., Barinas-Mitchell E. J., Mcdade E. M., Klunk W. E., Cohen A. D., et al. (2014). Arterial stiffness and beta-amyloid progression in nondemented elderly adults. JAMA Neurol. 71 562–568. 10.1001/jamaneurol.2014.186 10.1001/jamaneurol.2014.186 PMC4267249 24687165 Hughes T. M., Wagenknecht L. E., Craft S., Mintz A., Heiss G., Palta P., et al. (2018). Arterial stiffness and dementia pathology: atherosclerosis risk in communities (ARIC)-PET study. Neurology 90 e1248–e1256. 10.1212/WNL.0000000000005259 10.1212/WNL.0000000000005259 PMC5890613 29549223 Iliff J. J., Wang M., Zeppenfeld D. M., Venkataraman A., Plog B. A., Liao Y., et al. (2013b). Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain. J. Neurosci. 33 18190–18199. 10.1523/JNEUROSCI.1592-13.2013 10.1523/JNEUROSCI.1592-13.2013 PMC3866416 24227727 Iliff J. J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., et al. (2013a). Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 123 1299–1309. 10.1172/JCI67677 10.1172/JCI67677 PMC3582150 23434588 Iliff J. J., Wang M., Liao Y., Plogg B. A., Peng W., Gundersen G. A., et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 4:147ra111. 10.1126/scitranslmed.3003748 10.1126/scitranslmed.3003748 PMC3551275 22896675 Johnston S. C., O’meara E. S., Manolio T. A., Lefkowitz D., O’leary D. H., Goldstein S., et al. (2004). Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann. Intern. Med. 140 237–247. 10.7326/0003-4819-140-4-200402170-00005 10.7326/0003-4819-140-4-200402170-00005 14970146 Kitamura A., Manso Y., Duncombe J., Searcy J., Koudelka J., Binnie M., et al. (2017). Long-term cilostazol treatment reduces gliovascular damage and memory impairment in a mouse model of chronic cerebral hypoperfusion. Sci. Rep. 7:4299. 10.1038/s41598-017-04082-0 10.1038/s41598-017-04082-0 PMC5487324 28655874 Kober F., Duhamel G., Cozzone P. J. (2008). Experimental comparison of four FAIR arterial spin labeling techniques for quantification of mouse cerebral blood flow at 4.7 T. NMR Biomed. 21 781–792. 10.1002/nbm.1253 10.1002/nbm.1253 18384177 Kress B. T., Iliff J. J., Xia M., Wang M., Wei H. S., Zeppenfeld D., et al. (2014). Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 76 845–861. 10.1002/ana.24271 10.1002/ana.24271 PMC4245362 25204284 Matin N., Fisher C., Jackson W. F., Dorrance A. M. (2016). Bilateral common carotid artery stenosis in normotensive rats impairs endothelium-dependent dilation of parenchymal arterioles. Am. J. Physiol. Heart Circ. Physiol. 310 H1321–H1329. 10.1152/ajpheart.00890.2015 10.1152/ajpheart.00890.2015 PMC4895832 26968546 Mestre H., Du T., Sweeney A. M., Liu G., Samson A. J., Peng W., et al. (2020). Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science 367:eaax7171. 10.1126/science.aax7171 10.1126/science.aax7171 PMC7375109 32001524 Mestre H., Tithof J., Du T., Song W., Peng W. G., Sweeney A. M., et al. (2018). Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat. Commun. 9:4878. 10.1038/s41467-018-07318-3 10.1038/s41467-018-07318-3 PMC6242982 30451853 Montine T. J., Koroshetz W. J., Babcock D., Dickson D. W., Galpern W. R., Glymour M. M., et al. (2014). Recommendations of the Alzheimer’s disease-related dementias conference. Neurology 83 851–860. 10.1212/WNL.0000000000000733 10.1212/WNL.0000000000000733 PMC4155046 25080517 Morris A. W., Sharp M. M., Albargothy N. J., Fernandes R., Hawkes C. A., Verma A., et al. (2016). Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 131 725–736. 10.1007/s00401-016-1555-z 10.1007/s00401-016-1555-z PMC4835509 26975356 Okamoto Y., Yamamoto T., Kalaria R. N., Senzaki H., Maki T., Hase Y., et al. (2012). Cerebral hypoperfusion accelerates cerebral amyloid angiopathy and promotes cortical microinfarcts. Acta Neuropathol. 123 381–394. 10.1007/s00401-011-0925-9 10.1007/s00401-011-0925-9 PMC3282897 22170742 Patel A., Moalem A., Cheng H., Babadjouni R. M., Patel K., Hodis D. M., et al. (2017). Chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis causes selective recognition impairment in adult mice. Neurol. Res. 39 910–917. 10.1080/01616412.2017.1355423 10.1080/01616412.2017.1355423 PMC5591078 28828966 Paxinos G., Franklin K. B. J. (2001). The Mouse Brain in Stereotaxic Coordinates, 2nd Edn. San Diego: Academic Press. Peng W., Achariyar T. M., Li B., Liao Y., Mestre H., Hitomi E., et al. (2016). Suppression of glymphatic fluid transport in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 93 215–225. 10.1016/j.nbd.2016.05.015 10.1016/j.nbd.2016.05.015 PMC4980916 27234656 Poels M. M., Zaccai K., Verwoert G. C., Vernooij M. W., Hofman A., Van Der Lugt A., et al. (2012). Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke 43 2637–2642. 10.1161/strokeaha.111.642264 10.1161/strokeaha.111.642264 22879099 Potter G. M., Chappell F. M., Morris Z., Wardlaw J. M. (2015). Cerebral perivascular spaces visible on magnetic resonance imaging: development of a qualitative rating scale and its observer reliability. Cerebrovasc. Dis. 39 224–231. 10.1159/000375153 10.1159/000375153 PMC4386144 25823458 Reimer M. M., Mcqueen J., Searcy L., Scullion G., Zonta B., Desmazieres A., et al. (2011). Rapid disruption of axon-glial integrity in response to mild cerebral hypoperfusion. J. Neurosci. 31 18185–18194. 10.1523/JNEUROSCI.4936-11.2011 10.1523/JNEUROSCI.4936-11.2011 PMC4337974 22159130 Roberts J. M., Maniskas M. E., Bix G. J. (2018). Bilateral carotid artery stenosis causes unexpected early changes in brain extracellular matrix and blood-brain barrier integrity in mice. PLoS One 13:e0195765. 10.1371/journal.pone.0195765 10.1371/journal.pone.0195765 PMC5897017 29649307 Romero J. R., Beiser A., Seshadri S., Benjamin E. J., Polak J. F., Vasan R. S., et al. (2009). Carotid artery atherosclerosis, MRI indices of brain ischemia, aging, and cognitive impairment: the Framingham study. Stroke 40 1590–1596. 10.1161/STROKEAHA.108.535245 10.1161/STROKEAHA.108.535245 PMC2705324 19265054 Salvadores N., Searcy J. L., Holland P. R., Horsburgh K. (2017). Chronic cerebral hypoperfusion alters amyloid-beta peptide pools leading to cerebral amyloid angiopathy, microinfarcts and haemorrhages in Tg-SwDI mice. Clin. Sci. (Lond.) 131 2109–2123. 10.1042/CS20170962 10.1042/CS20170962 28667120 Schuff N., Matsumoto S., Kmiecik J., Studholme C., Du A., Ezekiel F., et al. (2009). Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimers Dement. 5 454–462. 10.1016/j.jalz.2009.04.1233 10.1016/j.jalz.2009.04.1233 PMC2802181 19896584 Shi Y., Wardlaw J. M. (2016). Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc. Neurol. 1 83–92. 10.1136/svn-2016-000035 10.1136/svn-2016-000035 PMC5435198 28959468 Shi Y., Thrippleton M. J., Blair G. W., Dickie D. A., Marshall I., Hamilton I., et al. (2018a). Small vessel disease is associated with altered cerebrovascular pulsatility but not resting cerebral blood flow. J. Cereb. Blood Flow Metab. 40 85–99. 10.1177/0271678X18803956 10.1177/0271678X18803956 PMC6928551 30295558 Shi Y., Thrippleton M. J., Marshall I., Wardlaw J. M. (2018b). Intracranial pulsatility in patients with cerebral small vessel disease: a systematic review. Clin. Sci. (Lond.) 132 157–171. 10.1042/CS20171280 10.1042/CS20171280 29229867 Shibata M., Ohtani R., Ihara M., Tomimoto H. (2004). White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35 2598–2603. 10.1161/01.STR.0000143725.19053.60 10.1161/01.STR.0000143725.19053.60 15472111 Shibata M., Yamasaki N., Miyakawa T., Kalaria R. N., Fujita Y., Ohtani R., et al. (2007). Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38 2826–2832. 10.1161/STROKEAHA.107.490151 10.1161/STROKEAHA.107.490151 17761909 Shokri-Kojori E., Wang G. J., Wiers C. E., Demiral S. B., Guo M., Kim S. W., et al. (2018). beta-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc. Natl. Acad. Sci. U.S.A. 115 4483–4488. 10.1073/pnas.1721694115 10.1073/pnas.1721694115 PMC5924922 29632177 Snowdon D. A., Greiner L. H., Mortimer J. A., Riley K. P., Greiner P. A., Markesbery W. R. (1997). Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277 813–817. 10.1001/jama.1997.03540340047031 10.1001/jama.1997.03540340047031 9052711 Wang M., Ding F., Deng S., Guo X., Wang W., Iliff J. J., et al. (2017). Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J. Neurosci. 37 2870–2877. 10.1523/JNEUROSCI.2112-16.2017 10.1523/JNEUROSCI.2112-16.2017 PMC5354332 28188218 Wardlaw J. M., Allerhand M., Eadie E., Thomas A., Corley J., Pattie A., et al. (2017). Carotid disease at age 73 and cognitive change from age 70 to 76 years: a longitudinal cohort study. J. Cereb. Blood Flow Metab. 37 3042–3052. 10.1177/0271678X16683693 10.1177/0271678X16683693 PMC5536260 28155579 Wardlaw J. M., Smith E. E., Biessels G. J., Cordonnier C., Fazekas F., Frayne R., et al. (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12 822–838. 10.1016/S1474-4422(13)70124-8 10.1016/S1474-4422(13)70124-8 PMC3714437 23867200 Xie L., Kang H., Xu Q., Chen M. J., Liao Y., Thiyagarajan M., et al. (2013). Sleep drives metabolite clearance from the adult brain. Science 342 373–377. 10.1126/science.1241224 10.1126/science.1241224 PMC3880190 24136970 Xu Z., Xiao N., Chen Y., Huang H., Marshall C., Gao J., et al. (2015). Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol. Neurodegener. 10:58. 10.1186/s13024-015-0056-1 10.1186/s13024-015-0056-1 PMC4631089 26526066 trying2... trying...
1426 5 0 1 MCID_676f08607e30e463e609d98f
39725239
39721674
39721217
39720539
39719574
function "functional"[All Fields] OR "functional's"[All Fields] OR "functionalities"[All Fields] OR "functionality"[All Fields] OR "functionalization"[All Fields] OR "functionalizations"[All Fields] OR "functionalize"[All Fields] OR "functionalized"[All Fields] OR "functionalizes"[All Fields] OR "functionalizing"[All Fields] OR "functionally"[All Fields] OR "functionals"[All Fields] OR "functioned"[All Fields] OR "functioning"[All Fields] OR "functionings"[All Fields] OR "functions"[All Fields] OR "physiology"[Subheading] OR "physiology"[All Fields] OR "function"[All Fields] OR "physiology"[MeSH Terms] "glymphatic"[All Fields] AND ("functional"[All Fields] OR "functional s"[All Fields] OR "functionalities"[All Fields] OR "functionality"[All Fields] OR "functionalization"[All Fields] OR "functionalizations"[All Fields] OR "functionalize"[All Fields] OR "functionalized"[All Fields] OR "functionalizes"[All Fields] OR "functionalizing"[All Fields] OR "functionally"[All Fields] OR "functionals"[All Fields] OR "functioned"[All Fields] OR "functioning"[All Fields] OR "functionings"[All Fields] OR "functions"[All Fields] OR "physiology"[MeSH Subheading] OR "physiology"[All Fields] OR "function"[All Fields] OR "physiology"[MeSH Terms])
trying2... trying...
39725239 2024 12 26 1873-2747 2024 Dec 24 Brain research bulletin Brain Res Bull Cognitive disorders: potential astrocyte-based mechanism. 111181 111181 10.1016/j.brainresbull.2024.111181 S0361-9230(24)00315-0 Cognitive disorders are a common clinical manifestation, including a deterioration in the patient's memory ability, attention, executive power, language, and other functions. The contributing factors of cognitive disorders are numerous and diverse in nature, including organic diseases and other mental disorders. Neurodegenerative diseases are a common type of organic disease related to the pathology of neuronal death and disruption of glial cell balance, ultimately accompanied with cognitive impairment. Thus, cognitive disorder frequently serves as an extremely critical indicator of neurodegenerative disorders. Cognitive impairments negatively affect patients' daily lives. However, our understanding of the precise pathogenic pathways of cognitive defects remains incomplete. The most prevalent kind of glial cells in the central nervous system are called astrocytes. They have a unique significance in cerebral function because of their wide range of functions in maintaining homeostasis in the central nervous system, regulating synaptic plasticity, and so on. Dysfunction of astrocytes is intimately linked to cognitive disorders, and we are attempting to understand this phenomenon predominantly from those perspectives: neuroinflammation, astrocytic senescence, connexin, Ca2+ signaling, mitochondrial dysfunction, and the glymphatic system. Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved. Li Shiyu S Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Chen Yeru Y Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Chen Gang G Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China. Electronic address: China.chengang120@zju.edu.cn. eng Journal Article Review 2024 12 24 United States Brain Res Bull 7605818 0361-9230 IM astrocytic homeostasis cognition Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. 2024 8 25 2024 12 11 2024 12 23 2024 12 27 0 21 2024 12 27 0 21 2024 12 26 19 18 aheadofprint 39725239 10.1016/j.brainresbull.2024.111181 S0361-9230(24)00315-0 39721674 2024 12 25 2024 12 25 1099-1492 38 2 2025 Feb NMR in biomedicine NMR Biomed Evaluation of the Glymphatic System in Rabbits Using Gadobutrol-Enhanced MR Cisternography With T1 and T2 Mapping. e5314 e5314 10.1002/nbm.5314 We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame. Twenty-one rabbits were included in the study. The CE-MRC exams with T1/T2 mappings were categorized into approximate time points based on an intention-to-scan approach: precontrast, less than 4 h after contrast, 24 h after contrast, and 24 to 120 h after gadobutrol. The presence of contrast media in the head and neck structures was scored with a 3-point scale (present, score: 2; absent, score: 0; and inconsistent, score: 1). T1 and T2 estimates were directly derived by drawing regions of interest on the corresponding maps. Gadobutrol accumulation was detected in the CSF near the cribriform plate and nasal areas on early-phase postcontrast images of all animals. These contrast material accumulations completely disappeared on the images obtained in postcontrast ≥ 24 h. The lowest T1 and T2 estimates in olfactory and cerebral areas were observed on early-phase images. Significant correlations were observed between the enhancement of the bladder and the medial portion of the sclera and the enhancement of inner ear structures, olfactory regions, turbinates, nasal cavities, and cranial subarachnoid spaces. The T1 and T2 estimates of the septum and olfactory bulb were generally lower than those measured in the frontal and parietal lobes on early-phase images. Our findings, which indicate an absence of clearly visible arachnoid granulations in rabbits, support the significance of olfactory outflow and the glymphatic system as highlighted in recent literature. Glymphatic transport can be more effectively demonstrated using T1 mapping in rabbits. The anatomical and physiological differences between human and rodent central nervous systems must be considered when translating experimental results from rabbits to humans. © 2024 John Wiley & Sons Ltd. Algin Oktay O 0000-0002-3877-8366 Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye. Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye. National MR Research Center, Bilkent University, Ankara, Türkiye. Cetinkaya Kadir K Neurosurgery Department, Tokat Government Hospital, Tokat, Türkiye. Oto Cagdas C Department of Radiology, Medical Faculty, Ankara University, Ankara, Türkiye. Interventional MR Clinical R&D Institute, Ankara University, Ankara, Altındag, Türkiye. National MR Research Center, Bilkent University, Ankara, Türkiye. Department of Anatomy, Veterinary Faculty, Ankara University, Ankara, Türkiye. Ayberk Gıyas G Neurosurgery Department, Medical Faculty, Yıldırım Beyazıt University, Ankara, Türkiye. eng Journal Article England NMR Biomed 8915233 0952-3480 1BJ477IO2L gadobutrol 0 Organometallic Compounds 0 Contrast Media IM Animals Rabbits Magnetic Resonance Imaging Organometallic Compounds Glymphatic System diagnostic imaging Contrast Media chemistry Cerebrospinal Fluid diagnostic imaging metabolism cerebrospinal fluid (CSF) cisternography gadolinium glymphatic intrathecal rabbits 2024 11 21 2024 10 16 2024 12 8 2024 12 26 0 21 2024 12 26 0 20 2024 12 25 20 23 ppublish 39721674 10.1002/nbm.5314 References S. Quintin, A. Barpujari, Y. Mehkri, J. Hernandez, and B. Lucke‐Wold, “The Glymphatic System and Subarachnoid Hemorrhage: Disruption and Recovery,” Exploration of Neuroprotective Therapy 2 (2022): 118–130. A. S. Thrane, V. Rangroo Thrane, and M. Nedergaard, “Drowning Stars: Reassessing the Role of Astrocytes in Brain Edema,” Trends in Neurosciences 37, no. 11 (2014): 620–628. L. M. Hablitz and M. Nedergaard, “The Glymphatic System: A Novel Component of Fundamental Neurobiology,” Journal of Neuroscience 41, no. 37 (2021): 7698–7711. M. Pollay, “The Function and Structure of the Cerebrospinal Fluid Outflow System,” Cerebrospinal Fluid Research 7 (2010): 9. T. J. Atchley, B. Vukic, M. Vukic, and B. C. Walters, “Review of Cerebrospinal Fluid Physiology and Dynamics: A Call for Medical Education Reform,” Neurosurgery 91, no. 1 (2022): 1–7. B. C. Reeves, J. K. Karimy, A. J. Kundishora, et al., “Glymphatic System Impairment in Alzheimer's Disease and Idiopathic Normal Pressure Hydrocephalus,” Trends in Molecular Medicine 26, no. 3 (2020): 285–295. C. Papaiconomou, R. Bozanovic‐Sosic, A. Zakharov, and M. Johnston, “Does Neonatal Cerebrospinal Fluid Absorption Occur via Arachnoid Projections or Extracranial Lymphatics?,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 283, no. 4 (2002): R869–R876. E. N. T. P. Bakker, D. M. P. Naessens, and E. VanBavel, “Paravascular Spaces: Entry to or Exit From the Brain?,” Experimental Physiology 104, no. 7 (2019): 1013–1017. T. Bohr, P. G. Hjorth, S. C. Holst, et al., “The Glymphatic System: Current Understanding and Modeling,” iScience 25, no. 9 (2022): 104987. E. Melin, P. K. Eide, and G. Ringstad, “In Vivo Assessment of Cerebrospinal Fluid Efflux to Nasal Mucosa in Humans,” Scientific Reports 10, no. 1 (2020): 14974. T. Taoka and S. Naganawa, “Glymphatic Imaging Using MRI,” Journal of Magnetic Resonance Imaging 51, no. 1 (2020): 11–24. Y. Xue, X. Liu, S. Koundal, et al., “In Vivo T1 Mapping for Quantifying Glymphatic System Transport and Cervical Lymph Node Drainage,” Scientific Reports 10, no. 1 (2020): 14592. P. R. Villamayor, J. M. Cifuentes, L. Quintela, R. Barcia, and P. Sanchez‐Quinteiro, “Structural, Morphometric and Immunohistochemical Study of the Rabbit Accessory Olfactory Bulb,” Brain Structure & Function 225, no. 1 (2020): 203–226. J. J. Iliff, M. Wang, Y. Liao, et al., “A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid Beta,” Science Translational Medicine 4, no. 147 (2012): 147ra111. J. G. Veening and H. P. Barendregt, “The Regulation of Brain States by Neuroactive Substances Distributed via the Cerebrospinal Fluid; A Review,” Cerebrospinal Fluid Research 7 (2010): 1–16. K. G. Kapoor, S. E. Katz, D. M. Grzybowski, and M. Lubow, “Cerebrospinal Fluid Outflow: An Evolving Perspective,” Brain Research Bulletin 77, no. 6 (2008): 327–334. P. H. Kuo, C. Stuehm, S. Squire, and K. Johnson, “Meningeal Lymphatic Vessel Flow Runs Countercurrent to Venous Flow in the Superior Sagittal Sinus of the Human Brain,” Tomography 4, no. 3 (2018): 99–104. F. Troili, V. Cipollini, M. Moci, et al., “Perivascular Unit: This Must Be the Place. The Anatomical Crossroad Between the Immune, Vascular and Nervous System,” Frontiers in Neuroanatomy 14 (2020): 17. J. Chen, L. Wang, H. Xu, et al., “Meningeal Lymphatics Clear Erythrocytes That Arise From Subarachnoid Hemorrhage,” Nature Communications 11, no. 1 (2020): 3159. T. Pu, W. Zou, W. Feng, et al., “Persistent Malfunction of Glymphatic and Meningeal Lymphatic Drainage in a Mouse Model of Subarachnoid Hemorrhage,” Experimental Neurobiology 28, no. 1 (2019): 104–118. T. Gaberel, C. Gakuba, R. Goulay, et al., “Impaired Glymphatic Perfusion After Strokes Revealed by Contrast‐Enhanced MRI: A new Target for Fibrinolysis?,” Stroke 45, no. 10 (2014): 3092–3096. K. Møllgård, F. R. M. Beinlich, P. Kusk, et al., “A Mesothelium Divides the Subarachnoid Space Into Functional Compartments,” Science 379, no. 6627 (2023): 84–88. M. Zhang, X. Hu, and L. Wang, “A Review of Cerebrospinal Fluid Circulation and the Pathogenesis of Congenital Hydrocephalus,” Neurochemical Research 49, no. 5 (2024): 1123–1136. A. Zakharov, C. Papaiconomou, L. Koh, J. Djenic, R. Bozanovic‐Sosic, and M. Johnston, “Integrating the Roles of Extracranial Lymphatics and Intracranial Veins in Cerebrospinal Fluid Absorption in Sheep,” Microvascular Research 67, no. 1 (2004): 96–104. J. G. McComb, H. Davson, S. Hyman, and M. H. Weiss, “Cerebrospinal Fluid Drainage Is Influenced by Ventricular Pressure in the Rabbit,” Journal of Neurosurgery 56 (1982): 790–797. S. B. Hladky and M. A. Barrand, “The Glymphatic Hypothesis: The Theory and the Evidence,” Fluids and Barriers of the CNS 19, no. 1 (2022): 9. B. Bedussi, M. Almasian, J. de Vos, E. VanBavel, and E. N. Bakker, “Paravascular Spaces at the Brain Surface: Low Resistance Pathways for Cerebrospinal Fluid Flow,” Journal of Cerebral Blood Flow and Metabolism 38, no. 4 (2018): 719–726. G. Ringstad and P. K. Eide, “The Pitfalls of Interpreting Hyperintense FLAIR Signal as Lymph Outside the Human Brain,” Nature Communications 14, no. 1 (2023): 4913. C. Sadegh, H. Xu, J. Sutin, et al., “Choroid Plexus‐Targeted NKCC1 Overexpression to Treat Post‐Hemorrhagic Hydrocephalus,” Neuron 111, no. 10 (2023): 1591–1608.e4. M. S. Albayram, G. Smith, F. Tufan, et al., “Non‐Invasive MR Imaging of Human Brain Lymphatic Networks With Connections to Cervical Lymph Nodes,” Nature Communications 13, no. 1 (2022): 203. M. W. Bradbury and R. J. Westrop, “Factors Influencing Exit of Substances From Cerebrospinal Fluid Into Deep Cervical Lymph of the Rabbit,” Journal of Physiology 339 (1983): 519–534. J. K. Kalmey, J. G. Thewissen, and D. E. Dluzen, “Age‐Related Size Reduction of Foramina in the Cribriform Plate,” Anatomical Record 251, no. 3 (1998): 326–329. R. Hudson, A. Arriola, M. Martinez‐Gomez, and H. Distel, “Effect of Air Pollution on Olfactory Function in Residents of Mexico City,” Chemical Senses 31 (2006): 79–85. S. Raouf, S. Kodsi, H. Schwartzstein, M. Hymowitz, K. Black, and H. D. Pomeranz, “Bilateral Optic Nerve Compression Secondary to Skull Hyperostosis From Vitamin a Deficiency,” Journal of AAPOS 25, no. 4 (2021): 245–247. X. Wang, N. Lou, A. Eberhardt, et al., “An Ocular Glymphatic Clearance System Removes Beta‐Amyloid From the Rodent Eye,” Science Translational Medicine 12, no. 536 (2020): eaaw3210. N. A. Jessen, A. S. Munk, I. Lundgaard, and M. Nedergaard, “The Glymphatic System: A Beginner's Guide,” Neurochemical Research 40, no. 12 (2015): 2583–2599. P. Wostyn and M. Nedergaard, “The Potential Influence of Sleep on Translaminar Pressure Dynamics and Ocular Glymphatic Outflow in Microgravity: Implications for Optic Disc Edema in Astronauts,” Eye (London, England) 38 (2024): 3398, https://doi.org/10.1038/s41433‐024‐03269‐w. X. J. Tong, G. Akdemir, M. Wadhwa, A. S. Verkman, and A. J. Smith, “Large Molecules From the Cerebrospinal Fluid Enter the Optic Nerve but Not the Retina of Mice,” Fluids and Barriers of the CNS 21, no. 1 (2024): 1. J. Qu, B. Pan, T. Su, et al., “T1 and T2 Mapping for Identifying Malignant Lymph Nodes in Head and Neck Squamous Cell Carcinoma,” Cancer Imaging 23, no. 1 (2023): 125. B. Madler, T. Harris, and A. L. MacKay, “3D‐Relaxometry‐Quantitative T1 and T2 Brain Mapping at 3T,” Proceedings on International Society for Magnetic Resonance in Medicine 14 (2006): 958. M. Ganzetti, N. Wenderoth, and D. Mantini, “Mapping Pathological Changes in Brain Structure by Combining T1‐ and T2‐Weighted MR Imaging Data,” Neuroradiology 57, no. 9 (2015): 917–928. D. Huang, J. Ju, B. Jiang, et al., “Changes of the Expression and Activity of Phosphodiesterase V in the Basilar Artery Before and After Cerebral Vasospasm in a Rabbit Model,” World Neurosurgery 132 (2019): e795–e801. H. Benveniste, H. Lee, B. Ozturk, et al., “Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging,” Neuroscience 474 (2021): 63–79. M. J. P. van Osch, A. Wåhlin, P. Scheyhing, et al., “Human Brain Clearance Imaging: Pathways Taken by Magnetic Resonance Imaging Contrast Agents After Administration in Cerebrospinal Fluid and Blood,” NMR in Biomedicine 37, no. 9 (2024): e5159. D. Jiang, Y. Gou, Z. Wei, X. Hou, V. Yedavalli, and H. Lu, “Quantification of T1 and T2 of Subarachnoid CSF: Implications for Water Exchange Between CSF and Brain Tissues,” Magnetic Resonance in Medicine 90, no. 6 (2023): 2411–2419. X. Miao, A. G. Paez, S. Rajan, et al., “Functional Activities Detected in the Olfactory Bulb and Associated Olfactory Regions in the Human Brain Using T2‐Prepared BOLD Functional MRI at 7T,” Frontiers in Neuroscience 15 (2021): 723441. O. Algin, U. Koc, and G. Ayberk, “Feasibility of 3D T1W Sequences in Contrast‐Material Enhanced MR Cisternography at 3T,” Turkish Journal of Medical Sciences 52, no. 6 (2022): 1943–1949. A. M. Sweeney, V. Plá, T. Du, et al., “In Vivo Imaging of Cerebrospinal Fluid Transport Through the Intact Mouse Skull Using Fluorescence Macroscopy,” Journal of Visualized Experiments no. 149 (2019): e59774, https://doi.org/10.3791/59774. 39721217 2024 12 25 2352-3964 111 2024 Dec 24 EBioMedicine EBioMedicine Robust, fully-automated assessment of cerebral perivascular spaces and white matter lesions: a multicentre MRI longitudinal study of their evolution and association with risk of dementia and accelerated brain atrophy. 105523 105523 10.1016/j.ebiom.2024.105523 S2352-3964(24)00559-0 Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility. We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials. We analysed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1 ± 9.7 years-old, 56.6% women) from three publicly available observational studies on ageing and dementia (the Alzheimer's Disease Neuroimaging Initiative, the National Alzheimer's Coordinating Centre database, and the Open Access Series of Imaging Studies). Clinical and MRI data collected between 2004 and 2022 were analysed with consistent methods, controlling for confounding factors, and combined using mixed-effects models. Our fully-automated method for PVS assessment showed excellent inter-scanner reproducibility (intraclass correlation coefficients >0.8). Fewer PVS and larger PVS diameter at baseline predicted higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers differed significantly in participants without dementia who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants at low risk of dementia based on our PVS markers enhanced the power of the trial independently of Alzheimer's disease biomarkers. These robust cerebrovascular markers predict dementia risk and brain atrophy and may improve risk-stratification of patients, potentially reducing cost and increasing throughput of clinical trials to combat dementia. US National Institutes of Health. Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved. Barisano Giuseppe G Department of Neurosurgery, Stanford University, Stanford, CA, USA. Electronic address: barisano@stanford.edu. Iv Michael M Department of Radiology, Stanford University, Stanford, CA, USA. Choupan Jeiran J Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., New York, NY, USA. Hayden-Gephart Melanie M Department of Neurosurgery, Stanford University, Stanford, CA, USA. Alzheimer’s Disease Neuroimaging Initiative eng Journal Article 2024 12 24 Netherlands EBioMedicine 101647039 2352-3964 IM Alzheimer’s disease Dementia Glymphatic system Perivascular spaces Small vessel disease White matter lesions Declaration of interests Giuseppe Barisano is listed as inventor on a patent application related to this work filed by Stanford University. The other authors declare that they have no competing interests. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Ageing, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of Southern California. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California. Weiner Michael M Aisen Paul P Petersen Ronald R Jack Clifford R CR Jagust William W Trojanowki John Q JQ Toga Arthur W AW Beckett Laurel L Green Robert C RC Saykin Andrew J AJ Morris John J Shaw Leslie M LM Liu Enchi E Montine Tom T Thomas Ronald G RG Donohue Michael M Walter Sarah S Gessert Devon D Sather Tamie T Jiminez Gus G Harvey Danielle D Donohue Michael M Bernstein Matthew M Fox Nick N Thompson Paul P Schuff Norbert N DeCarli Charles C Borowski Bret B Gunter Jeff J Senjem Matt M Vemuri Prashanthi P Jones David D Kantarci Kejal K Ward Chad C Koeppe Robert A RA Foster Norm N Reiman Eric M EM Chen Kewei K Mathis Chet C Landau Susan S Cairns Nigel J NJ Householder Erin E Reinwald Lisa Taylor LT Lee Virginia V Korecka Magdalena M Figurski Michal M Crawford Karen K Neu Scott S Foroud Tatiana M TM Potkin Steven S Shen Li L Kelley Faber F Kim Sungeun S Nho Kwangsik K Kachaturian Zaven Z Frank Richard R Snyder Peter J PJ Molchan Susan S Kaye Jeffrey J Quinn Joseph J Lind Betty B Carter Raina R Dolen Sara S Schneider Lon S LS Pawluczyk Sonia S Beccera Mauricio M Teodoro Liberty L Spann Bryan M BM Brewer James J Vanderswag Helen H Fleisher Adam A Heidebrink Judith L JL Lord Joanne L JL Petersen Ronald R Mason Sara S SS Albers Colleen S CS Knopman David D Johnson Kris K Doody Rachelle S RS Meyer Javier Villanueva JV Chowdhury Munir M Rountree Susan S Dang Mimi M Stern Yaakov Y Honig Lawrence S LS Bell Karen L KL Ances Beau B Morris John C JC Carroll Maria M Leon Sue S Householder Erin E Mintun Mark A MA Schneider Stacy S Oliver Angela A Marson Daniel D Griffith Randall R Clark David D Geld-Macher David D Brockington John J Roberson Erik E Grossman Hillel H Mitsis Effie E Leyla deToledo-Morrell Shah Raj C RC Duara Ranjan R Varon Daniel D Greig Maria T MT Roberts Peggy P Albert Marilyn M Onyike Chiadi C D'Agostino Daniel D Kielb Stephanie S Galvin James E JE Pogorelec Dana M DM Cerbone Brittany B Michel Christina A CA Rusinek Henry H de Leon Mony J MJ Glodzik Lidia L De Santi Susan S Doraiswamy P Murali PM Petrella Jeffrey R JR Wong Terence Z TZ Arnold Steven E SE Karlawish Jason H JH Wolk David D Smith Charles D CD Jicha Greg G Hardy Peter P Sinha Partha P Oates Elizabeth E Conrad Gary G Lopez Oscar L OL Oakley MaryAnn M Simpson Donna M DM Porsteinsson Anton P AP Goldstein Bonnie S BS Martin Kim K Makino Kelly M KM Ismail M Saleem MS Brand Connie C Mulnard Ruth A RA Thai Gaby G Adams Ortiz Catherine Mc CM Womack Kyle K Mathews Dana D Quiceno Mary M Arrastia Ramon Diaz RD King Richard R Weiner Myron M Cook Kristen Martin KM DeVous Michael M Levey Allan I AI Lah James J JJ Cellar Janet S JS Burns Jeffrey M JM Anderson Heather S HS Swerdlow Russell H RH Apostolova Liana L Tingus Kathleen K Woo Ellen E Silverman Daniel H S DHS Lu Po H PH Bartzokis George G Graff Radford Neill R NR Parfitt Francine F Kendall Tracy T Johnson Heather H Farlow Martin R MR Hake AnnMarie A Matthews Brandy R BR Herring Scott S Hunt Cynthia C van Dyck Christopher H CH Carson Richard E RE MacAvoy Martha G MG Chertkow Howard H Bergman Howard H Hosein Chris C Black Sandra S Stefanovic Bojana B Caldwell Curtis C Robin Hsiung Ging-Yuek GY Feldman Howard H Mudge Benita B Assaly Michele M Kertesz Andrew A Rogers John J Trost Dick D Bernick Charles C Munic Donna D Kerwin Diana D Mesulam Marek Marsel MM Lipowski Kristine K Wu Chuang Kuo CK Johnson Nancy N Sadowsky Carl C Martinez Walter W Villena Teresa T Turner Raymond Scott RS Johnson Kathleen K Reynolds Brigid B Sperling Reisa A RA Johnson Keith A KA Marshall Gad G Frey Meghan M Yesavage Jerome J Taylor Joy L JL Lane Barton B Rosen Allyson A Tinklenberg Jared J Sabbagh Marwan N MN Belden Christine M CM Jacobson Sandra A SA Sirrel Sherye A SA Kowall Neil N Killiany Ronald R Budson Andrew E AE Norbash Alexander A Johnson Patricia Lynn PL Obisesan Thomas O TO Wolday Saba S Allard Joanne J Lerner Alan A Ogrocki Paula P Hudson Leon L Fletcher Evan E Carmichael Owen O Olichney John J DeCarli Charles C Kittur Smita S Borrie Michael M Lee T Y TY Bartha Rob R Johnson Sterling S Asthana Sanjay S Carlsson Cynthia M CM Potkin Steven G SG Preda Adrian A Nguyen Dana D Tariot Pierre P Fleisher Adam A Reeder Stephanie S Bates Vernice V Capote Horacio H Rainka Michelle M Scharre Douglas W DW Kataki Maria M Adeli Anahita A Zimmerman Earl A EA Celmins Dzintra D Brown Alice D AD Pearlson Godfrey D GD Blank Karen K Anderson Karen K Santulli Robert B RB Kitzmiller Tamar J TJ Schwartz Eben S ES Sink Kaycee M KM Williamson Jeff D JD Garg Pradeep P Watkins Franklin F Ott Brian R BR Querfurth Henry H Tremont Geoffrey G Salloway Stephen S Malloy Paul P Correia Stephen S Rosen Howard J HJ Miller Bruce L BL Mintzer Jacobo J Spicer Kenneth K Bachman David D Finger Elizabeth E Pasternak Stephen S Rachinsky Irina I Rogers John J Kertesz Andrew A Drost Dick D Pomara Nunzio N Hernando Raymundo R Sarrael Antero A Schultz Susan K SK Boles Ponto Laura L LL Shim Hyungsub H Smith Karen Elizabeth KE Relkin Norman N Chaing Gloria G Raudin Lisa L Smith Amanda A Fargher Kristin K Raj Balebail Ashok BA 2024 7 29 2024 11 3 2024 12 10 2024 12 26 0 20 2024 12 26 0 20 2024 12 25 18 5 aheadofprint 39721217 10.1016/j.ebiom.2024.105523 S2352-3964(24)00559-0 39720539 2024 12 25 2589-0042 27 12 2024 Dec 20 iScience iScience Divergent brain solute clearance in rat models of cerebral amyloid angiopathy and Alzheimer's disease. 111463 111463 111463 10.1016/j.isci.2024.111463 Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived. To fill this knowledge gap, we here implemented unbalanced rOMT analysis which allows for assessment of both influx and clearance. Dynamic influx/clearance brain maps were derived from rTg-DI rats with cerebral amyloid angiopathy (CAA) and TgSD-AD rats with Alzheimer's disease (AD). The rTg-DI rats with severe CAA disease exhibited abnormal influx/clearance kinetics, while TgSD-AD rats with a moderate Aβ plaque load exhibited normal transport suggesting that different Aβ lesions and their overall burden differentially impact glymphatic system function. © 2024 The Author(s). Koundal Sunil S Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Chen Xinan X Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA. Gursky Zachary Z Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Lee Hedok H Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Xu Kaiming K Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA. Liang Feng F Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA. Xie Zhongcong Z Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02114, USA. Xu Feng F George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA. Lin Hung-Mo HM Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Van Nostrand William E WE George and Anne Ryan Institute for Neuroscience and the Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02906, USA. Gu Xianfeng X Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA. Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA. Elkin Rena R Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York City, NY 10065, USA. Tannenbaum Allen A Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, USA. Departments of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA. Benveniste Helene H Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA. Department of Biomedical Engineering, Yale School of Medicine New Haven, New Haven, CT 06510, USA. eng Journal Article 2024 11 23 United States iScience 101724038 2589-0042 Biological sciences Neuroscience The authors declare no competing financial interests. 2024 4 18 2024 7 5 2024 11 20 2024 12 25 6 21 2024 12 25 6 20 2024 12 25 4 25 2024 11 23 epublish 39720539 PMC11667077 10.1016/j.isci.2024.111463 S2589-0042(24)02690-7 Alafuzoff I., Arzberger T., Al-Sarraj S., Bodi I., Bogdanovic N., Braak H., Bugiani O., Del-Tredici K., Ferrer I., Gelpi E., et al. Staging of neurofibrillary pathology in Alzheimer's disease: a study of the BrainNet Europe Consortium. Brain Pathol. 2008;18:484–496. doi: 10.1111/j.1750-3639.2008.00147.x. 10.1111/j.1750-3639.2008.00147.x PMC2659377 18371174 Braak H., Braak E. Staging of Alzheimer's disease-related neurofibrillary changes. Neurobiol. Aging. 1995;16:271–284. doi: 10.1016/0197-4580(95)00021-6. 10.1016/0197-4580(95)00021-6 7566337 Thal D.R., Ghebremedhin E., Rüb U., Yamaguchi H., Del Tredici K., Braak H. Two types of sporadic cerebral amyloid angiopathy. J. Neuropathol. Exp. Neurol. 2002;61:282–293. 11895043 Peng W., Achariyar T.M., Li B., Liao Y., Mestre H., Hitomi E., Regan S., Kasper T., Peng S., Ding F., et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol. Dis. 2016;93:215–225. doi: 10.1016/j.nbd.2016.05.015. 10.1016/j.nbd.2016.05.015 PMC4980916 27234656 Tarasoff-Conway J.M., Carare R.O., Osorio R.S., Glodzik L., Butler T., Fieremans E., Axel L., Rusinek H., Nicholson C., Zlokovic B.V., et al. Clearance systems in the brain-implications for Alzheimer disease. Nat. Rev. Neurol. 2015;11:457–470. doi: 10.1038/nrneurol.2015.119. 10.1038/nrneurol.2015.119 PMC4694579 26195256 Harrison I.F., Ismail O., Machhada A., Colgan N., Ohene Y., Nahavandi P., Ahmed Z., Fisher A., Meftah S., Murray T.K., et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain. 2020;143:2576–2593. doi: 10.1093/brain/awaa179. 10.1093/brain/awaa179 PMC7447521 32705145 Ben-Nejma I.R.H., Keliris A.J., Vanreusel V., Ponsaerts P., Van der Linden A., Keliris G.A. Altered dynamics of glymphatic flow in a mature-onset Tet-off APP mouse model of amyloidosis. Alzheimer's Res. Ther. 2023;15:23. doi: 10.1186/s13195-023-01175-z. 10.1186/s13195-023-01175-z PMC9883946 36707887 Da Mesquita S., Louveau A., Vaccari A., Smirnov I., Cornelison R.C., Kingsmore K.M., Contarino C., Onengut-Gumuscu S., Farber E., Raper D., et al. Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature. 2018;560:185–191. doi: 10.1038/s41586-018-0368-8. 10.1038/s41586-018-0368-8 PMC6085146 30046111 Carare R.O., Bernardes-Silva M., Newman T.A., Page A.M., Nicoll J.A.R., Perry V.H., Weller R.O. Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol. Appl. Neurobiol. 2008;34:131–144. doi: 10.1111/j.1365-2990.2007.00926.x. 10.1111/j.1365-2990.2007.00926.x 18208483 Weller R.O., Massey A., Kuo Y.M., Roher A.E. Cerebral amyloid angiopathy: accumulation of A beta in interstitial fluid drainage pathways in Alzheimer's disease. Ann. N. Y. Acad. Sci. 2000;903:110–117. doi: 10.1111/j.1749-6632.2000.tb06356.x. 10.1111/j.1749-6632.2000.tb06356.x 10818495 Chen X., Liu X., Kounda S., Elkin R., Zhu X., Monte B., Xu F., Pedram M., Lee H., Kipnis J., et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nature Aging. 2022;2:214–233. doi: 10.1038/s43587-022-00181-4. 10.1038/s43587-022-00181-4 PMC9531841 36199752 Bohr T., Hjorth P.G., Holst S.C., Hrabětová S., Kiviniemi V., Lilius T., Lundgaard I., Mardal K.A., Martens E.A., Mori Y., et al. The glymphatic system: Current understanding and modeling. iScience. 2022;25 doi: 10.1016/j.isci.2022.104987. 10.1016/j.isci.2022.104987 PMC9460186 36093063 Iliff J.J., Wang M., Liao Y., Plogg B.A., Peng W., Gundersen G.A., Benveniste H., Vates G.E., Deane R., Goldman S.A., et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci. Transl. Med. 2012;4 doi: 10.1126/scitranslmed.3003748. 10.1126/scitranslmed.3003748 PMC3551275 22896675 Zhao L., Tannenbaum A., Bakker E.N.T.P., Benveniste H. Physiology of Glymphatic Solute Transport and Waste Clearance from the Brain. Physiology. 2022;37:349–362. doi: 10.1152/physiol.00015.2022. 10.1152/physiol.00015.2022 PMC9550574 35881783 Aspelund A., Antila S., Proulx S.T., Karlsen T.V., Karaman S., Detmar M., Wiig H., Alitalo K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med. 2015;212:991–999. doi: 10.1084/jem.20142290. 10.1084/jem.20142290 PMC4493418 26077718 Louveau A., Smirnov I., Keyes T.J., Eccles J.D., Rouhani S.J., Peske J.D., Derecki N.C., Castle D., Mandell J.W., Lee K.S., et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. doi: 10.1038/nature14432. 10.1038/nature14432 PMC4506234 26030524 Thomas J.L., Benveniste H. CSF-to-dura gateways. J. Exp. Med. 2023;220 doi: 10.1084/jem.20221719. 10.1084/jem.20221719 PMC9729850 36472584 Jacob L., de Brito Neto J., Lenck S., Corcy C., Benbelkacem F., Geraldo L.H., Xu Y., Thomas J.M., El Kamouh M.R., Spajer M., et al. Conserved meningeal lymphatic drainage circuits in mice and humans. J. Exp. Med. 2022;219 doi: 10.1084/jem.20220035. 10.1084/jem.20220035 PMC9253621 35776089 Kress B.T., Iliff J.J., Xia M., Wang M., Wei H.S., Zeppenfeld D., Xie L., Kang H., Xu Q., Liew J.A., et al. Impairment of paravascular clearance pathways in the aging brain. Ann. Neurol. 2014;76:845–861. doi: 10.1002/ana.24271. 10.1002/ana.24271 PMC4245362 25204284 Mestre H., Hablitz L.M., Xavier A.L., Feng W., Zou W., Pu T., Monai H., Murlidharan G., Castellanos Rivera R.M., Simon M.J., et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife. 2018;7 doi: 10.7554/eLife.40070. 10.7554/eLife.40070 PMC6307855 30561329 Benveniste H., Lee H., Ozturk B., Chen X., Koundal S., Vaska P., Tannenbaum A., Volkow N.D. Glymphatic Cerebrospinal Fluid and Solute Transport Quantified by MRI and PET Imaging. Neuroscience. 2021;474:63–79. doi: 10.1016/j.neuroscience.2020.11.014. 10.1016/j.neuroscience.2020.11.014 PMC8149482 33248153 Iliff J.J., Lee H., Yu M., Feng T., Logan J., Nedergaard M., Benveniste H. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J. Clin. Invest. 2013;123:1299–1309. doi: 10.1172/JCI67677. 10.1172/JCI67677 PMC3582150 23434588 Ratner V., Gao Y., Lee H., Elkin R., Nedergaard M., Benveniste H., Tannenbaum A. Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport. Neuroimage. 2017;152:530–537. doi: 10.1016/j.neuroimage.2017.03.021. 10.1016/j.neuroimage.2017.03.021 PMC5490081 28323163 Elkin R., Nadeem S., Haber E., Steklova K., Lee H., Benveniste H., Tannenbaum A. GlymphVIS: Visualizing glymphatic transport pathways using regularized optimal transport. Med. Image Comput. Comput. Assist. Interv. 2018;11070:844–852. doi: 10.1007/978-3-030-00928-1_95. 10.1007/978-3-030-00928-1_95 PMC6426141 30906935 Koundal S., Elkin R., Nadeem S., Xue Y., Constantinou S., Sanggaard S., Liu X., Monte B., Xu F., Van Nostrand W., et al. Optimal Mass Transport with Lagrangian Workflow Reveals Advective and Diffusion Driven Solute Transport in the Glymphatic System. Sci. Rep. 2020;10:1990. doi: 10.1038/s41598-020-59045-9. 10.1038/s41598-020-59045-9 PMC7004986 32029859 Chen X., Liu X., Koundal S., Elkin R., Zhu X., Monte B., Xu F., Dai F., Pedram M., Lee H., et al. Cerebral amyloid angiopathy is associated with glymphatic transport reduction and time-delayed solute drainage along the neck arteries. Nat. Aging. 2022;2:214–223. doi: 10.1038/s43587-022-00181-4. 10.1038/s43587-022-00181-4 PMC9531841 36199752 Chen X., Benveniste H., Tannenbaum A.R. Unbalanced regularized optimal mass transport with applications to fluid flows in the brain. Sci. Rep. 2024;14:1111. doi: 10.1038/s41598-023-50874-y. 10.1038/s41598-023-50874-y PMC10784574 38212659 Eide P.K., Vinje V., Pripp A.H., Mardal K.A., Ringstad G. Sleep deprivation impairs molecular clearance from the human brain. Brain. 2021;144:863–874. doi: 10.1093/brain/awaa443. 10.1093/brain/awaa443 33829232 Ringstad G., Valnes L.M., Dale A.M., Pripp A.H., Vatnehol S.A.S., Emblem K.E., Mardal K.A., Eide P.K. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight. 2018;3 doi: 10.1172/jci.insight.121537. 10.1172/jci.insight.121537 PMC6124518 29997300 Davis J., Xu F., Hatfield J., Lee H., Hoos M.D., Popescu D., Crooks E., Kim R., Smith S.O., Robinson J.K., et al. A Novel Transgenic Rat Model of Robust Cerebral Microvascular Amyloid with Prominent Vasculopathy. Am. J. Pathol. 2018;188:2877–2889. doi: 10.1016/j.ajpath.2018.07.030. 10.1016/j.ajpath.2018.07.030 PMC6334267 30446159 Zhu X., Hatfield J., Sullivan J.K., Xu F., Van Nostrand W.E. Robust neuroinflammation and perivascular pathology in rTg-DI rats, a novel model of microvascular cerebral amyloid angiopathy. J. Neuroinflammation. 2020;17:78. doi: 10.1186/s12974-020-01755-y. 10.1186/s12974-020-01755-y PMC7055091 32127016 Lee H., Xu F., Liu X., Koundal S., Zhu X., Davis J., Yanez D., Schrader J., Stanisavljevic A., Rothman D.L., et al. Diffuse white matter loss in a transgenic rat model of cerebral amyloid angiopathy. J. Cerebr. Blood Flow Metabol. 2021;41:1103–1118. doi: 10.1177/0271678X20944226. 10.1177/0271678X20944226 PMC8054716 32791876 Schrader J.M., Stanisavljevic A., Xu F., Van Nostrand W.E. Distinct Brain Proteomic Signatures in Cerebral Small Vessel Disease Rat Models of Hypertension and Cerebral Amyloid Angiopathy. J. Neuropathol. Exp. Neurol. 2022;81:731–745. doi: 10.1093/jnen/nlac057. 10.1093/jnen/nlac057 PMC9803909 35856898 Schrader J.M., Xu F., Lee H., Barlock B., Benveniste H., Van Nostrand W.E. Emergent White Matter Degeneration in the rTg-DI Rat Model of Cerebral Amyloid Angiopathy Exhibits Unique Proteomic Changes. Am. J. Pathol. 2022;192:426–440. doi: 10.1016/j.ajpath.2021.11.010. 10.1016/j.ajpath.2021.11.010 PMC8895424 34896071 Popescu D.L., Van Nostrand W.E., Robinson J.K. Longitudinal Cognitive Decline in a Novel Rodent Model of Cerebral Amyloid Angiopathy Type-1. Int. J. Mol. Sci. 2020;21 doi: 10.3390/ijms21072348. 10.3390/ijms21072348 PMC7177469 32231123 Schrader J.M., Xu F., Agostinucci K.J., DaSilva N.A., Van Nostrand W.E. Longitudinal markers of cerebral amyloid angiopathy and related inflammation in rTg-DI rats. Sci. Rep. 2024;14:8441. doi: 10.1038/s41598-024-59013-7. 10.1038/s41598-024-59013-7 PMC11006668 38600214 Ozturk B., Koundal S., Al Bizri E., Chen X., Gursky Z., Dai F., Lim A., Heerdt P., Kipnis J., Tannenbaum A., et al. Continuous positive airway pressure increases CSF flow and glymphatic transport. JCI Insight. 2023;8 doi: 10.1172/jci.insight.170270. 10.1172/jci.insight.170270 PMC10371231 37159262 Hablitz L.M., Plá V., Giannetto M., Vinitsky H.S., Stæger F.F., Metcalfe T., Nguyen R., Benrais A., Nedergaard M. Circadian control of brain glymphatic and lymphatic fluid flow. Nat. Commun. 2020;11:4411. doi: 10.1038/s41467-020-18115-2. 10.1038/s41467-020-18115-2 PMC7468152 32879313 Eide P.K., Ringstad G. MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol. Open. 2015;4 doi: 10.1177/2058460115609635. 10.1177/2058460115609635 PMC4652208 26634147 Cohen R.M., Rezai-Zadeh K., Weitz T.M., Rentsendorj A., Gate D., Spivak I., Bholat Y., Vasilevko V., Glabe C.G., Breunig J.J., et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric abeta, and frank neuronal loss. J. Neurosci. 2013;33:6245–6256. doi: 10.1523/JNEUROSCI.3672-12.2013. 10.1523/JNEUROSCI.3672-12.2013 PMC3720142 23575824 Benveniste H., Einstein G., Kim K.R., Hulette C., Johnson G.A. Detection of neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc. Natl. Acad. Sci. USA. 1999;96:14079–14084. doi: 10.1073/pnas.96.24.14079. 10.1073/pnas.96.24.14079 PMC24193 10570201 Liang F., Baldyga K., Quan Q., Khatri A., Choi S., Wiener-Kronish J., Akeju O., Westover M.B., Cody K., Shen Y., et al. Preoperative Plasma Tau-PT217 and Tau-PT181 Are Associated With Postoperative Delirium. Ann. Surg. 2023;277:e1232–e1238. doi: 10.1097/SLA.0000000000005487. 10.1097/SLA.0000000000005487 PMC9875943 35794069 Cserr H.F., Cooper D.N., Suri P.K., Patlak C.S. Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 1981;240:F319–F328. doi: 10.1152/ajprenal.1981.240.4.F319. 10.1152/ajprenal.1981.240.4.F319 7223889 Szentistvanyi I., Patlak C.S., Ellis R.A., Cserr H.F. Drainage of interstitial fluid from different regions of rat brain. Am. J. Physiol. 1984;246:F835–F844. doi: 10.1152/ajprenal.1984.246.6.F835. 10.1152/ajprenal.1984.246.6.F835 6742132 Lee H., Xie L., Yu M., Kang H., Feng T., Deane R., Logan J., Nedergaard M., Benveniste H. The Effect of Body Posture on Brain Glymphatic Transport. J. Neurosci. 2015;35:11034–11044. doi: 10.1523/JNEUROSCI.1625-15.2015. 10.1523/JNEUROSCI.1625-15.2015 PMC4524974 26245965 Benveniste H., Lee H., Ding F., Sun Q., Al-Bizri E., Makaryus R., Probst S., Nedergaard M., Stein E.A., Lu H. Anesthesia with Dexmedetomidine and Low-dose Isoflurane Increases Solute Transport via the Glymphatic Pathway in Rat Brain When Compared with High-dose Isoflurane. Anesthesiology. 2017;127:976–988. doi: 10.1097/Aln.0000000000001888. 10.1097/Aln.0000000000001888 PMC5685871 28938276 Pla V., Bork P., Harnpramukkul A., Olveda G., Ladron-de-Guevara A., Giannetto M.J., Hussain R., Wang W., Kelley D.H., Hablitz L.M., Nedergaard M. A real-time in vivo clearance assay for quantification of glymphatic efflux. Cell Rep. 2022;40 doi: 10.1016/j.celrep.2022.111320. 10.1016/j.celrep.2022.111320 36103828 Ray L., Iliff J.J., Heys J.J. Analysis of convective and diffusive transport in the brain interstitium. Fluids Barriers CNS. 2019;16:6. doi: 10.1186/s12987-019-0126-9. 10.1186/s12987-019-0126-9 PMC6402182 30836968 Bakker E.N.T.P., Naessens D.M.P., VanBavel E. Paravascular spaces: entry to or exit from the brain? Exp. Physiol. 2019;104:1013–1017. doi: 10.1113/EP087424. 10.1113/EP087424 PMC6618149 30582766 Davson H. Review lecture. The blood-brain barrier. J. Physiol. 1976;255:1–28. doi: 10.1113/jphysiol.1976.sp011267. 10.1113/jphysiol.1976.sp011267 PMC1309232 1255511 Aktas G., Kollmeier J.M., Joseph A.A., Merboldt K.D., Ludwig H.C., Gärtner J., Frahm J., Dreha-Kulaczewski S. Spinal CSF flow in response to forced thoracic and abdominal respiration. Fluids Barriers CNS. 2019;16:10. doi: 10.1186/s12987-019-0130-0. 10.1186/s12987-019-0130-0 PMC6449937 30947716 Dreha-Kulaczewski S., Joseph A.A., Merboldt K.D., Ludwig H.C., Gärtner J., Frahm J. Inspiration is the major regulator of human CSF flow. J. Neurosci. 2015;35:2485–2491. doi: 10.1523/JNEUROSCI.3246-14.2015. 10.1523/JNEUROSCI.3246-14.2015 PMC6605608 25673843 Chan S.T., Evans K.C., Song T.Y., Selb J., van der Kouwe A., Rosen B.R., Zheng Y.P., Ahn A.C., Kwong K.K. Dynamic brain-body coupling of breath-by-breath O2-CO2 exchange ratio with resting state cerebral hemodynamic fluctuations. PLoS One. 2020;15 doi: 10.1371/journal.pone.0238946. 10.1371/journal.pone.0238946 PMC7505589 32956397 Ma Q., Ineichen B.V., Detmar M., Proulx S.T. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat. Commun. 2017;8:1434. doi: 10.1038/s41467-017-01484-6. 10.1038/s41467-017-01484-6 PMC5681558 29127332 Ahn J.H., Cho H., Kim J.H., Kim S.H., Ham J.S., Park I., Suh S.H., Hong S.P., Song J.H., Hong Y.K., et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–66. doi: 10.1038/s41586-019-1419-5. 10.1038/s41586-019-1419-5 31341278 Yoon J.H., Jin H., Kim H.J., Hong S.P., Yang M.J., Ahn J.H., Kim Y.C., Seo J., Lee Y., McDonald D.M., et al. Nasopharyngeal lymphatic plexus is a hub for cerebrospinal fluid drainage. Nature. 2024;625:768–777. doi: 10.1038/s41586-023-06899-4. 10.1038/s41586-023-06899-4 PMC10808075 38200313 Nedergaard M. Neuroscience. Garbage truck of the brain. Science. 2013;340:1529–1530. doi: 10.1126/science.1240514. 10.1126/science.1240514 PMC3749839 23812703 Nedergaard M., Goldman S.A. Brain Drain. Sci. Am. 2016;314:44–49. doi: 10.1038/scientificamerican0316-44. 10.1038/scientificamerican0316-44 PMC5347443 27066643 Ringstad G., Vatnehol S.A.S., Eide P.K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain. 2017;140:2691–2705. doi: 10.1093/brain/awx191. 10.1093/brain/awx191 PMC5841149 28969373 Eide P.K., Valnes L.M., Pripp A.H., Mardal K.A., Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J. Cerebr. Blood Flow Metabol. 2020;40:1849–1858. doi: 10.1177/0271678X19874790. 10.1177/0271678X19874790 PMC7446558 31495299 van Veluw S.J., Hou S.S., Calvo-Rodriguez M., Arbel-Ornath M., Snyder A.C., Frosch M.P., Greenberg S.M., Bacskai B.J. Vasomotion as a Driving Force for Paravascular Clearance in the Awake Mouse Brain. Neuron. 2020;105:549–561.e5. doi: 10.1016/j.neuron.2019.10.033. 10.1016/j.neuron.2019.10.033 PMC7028316 31810839 Garcia-Alloza M., Robbins E.M., Zhang-Nunes S.X., Purcell S.M., Betensky R.A., Raju S., Prada C., Greenberg S.M., Bacskai B.J., Frosch M.P. Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol. Dis. 2006;24:516–524. doi: 10.1016/j.nbd.2006.08.017. 10.1016/j.nbd.2006.08.017 17029828 Vinje V., Zapf B., Ringstad G., Eide P.K., Rognes M.E., Mardal K.A. Human brain solute transport quantified by glymphatic MRI-informed biophysics during sleep and sleep deprivation. Fluids Barriers CNS. 2023;20:62. doi: 10.1186/s12987-023-00459-8. 10.1186/s12987-023-00459-8 PMC10439559 37596635 Jakel L., De Kort A.M., Klijn C.J.M., Schreuder F., Verbeek M.M. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis. Alzheimers Dement. 2022;18:10–28. doi: 10.1002/alz.12366. 10.1002/alz.12366 PMC9290643 34057813 Tustison N.J., Avants B.B., Cook P.A., Zheng Y., Egan A., Yushkevich P.A., Gee J.C. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imag. 2010;29:1310–1320. doi: 10.1109/TMI.2010.2046908. 10.1109/TMI.2010.2046908 PMC3071855 20378467 Percie du Sert N., Hurst V., Ahluwalia A., Alam S., Avey M.T., Baker M., Browne W.J., Clark A., Cuthill I.C., Dirnagl U., et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res. 2020;16:242. doi: 10.1186/s12917-020-02451-y. 10.1186/s12917-020-02451-y PMC7359286 32660541 Rathi Y., Olver P., Sapiro G., Tannenbaum A. Affine invariant surface evolutions for 3D image segmentation. Proc. SPIE. 2006;6064:606401. doi: 10.1117/12.640282. 10.1117/12.640282 Johnson G.A., Calabrese E., Badea A., Paxinos G., Watson C. A multidimensional magnetic resonance histology atlas of the Wistar rat brain. Neuroimage. 2012;62:1848–1856. doi: 10.1016/j.neuroimage.2012.05.041. 10.1016/j.neuroimage.2012.05.041 PMC3408821 22634863 Johnson G.A., Cofer G.P., Gewalt S.L., Hedlund L.W. Morphologic phenotyping with MR microscopy: the visible mouse. Radiology. 2002;222:789–793. doi: 10.1148/radiol.2223010531. 10.1148/radiol.2223010531 11867802 Davis J., Xu F., Miao J., Previti M.L., Romanov G., Ziegler K., Van Nostrand W.E. Deficient cerebral clearance of vasculotropic mutant Dutch/Iowa Double A beta in human A betaPP transgenic mice. Neurobiol. Aging. 2006;27:946–954. doi: 10.1016/j.neurobiolaging.2005.05.031. 10.1016/j.neurobiolaging.2005.05.031 16105708 Xu F., Grande A.M., Robinson J.K., Previti M.L., Vasek M., Davis J., Van Nostrand W.E. Early-onset subicular microvascular amyloid and neuroinflammation correlate with behavioral deficits in vasculotropic mutant amyloid beta-protein precursor transgenic mice. Neuroscience. 2007;146:98–107. doi: 10.1016/j.neuroscience.2007.01.043. 10.1016/j.neuroscience.2007.01.043 PMC1949338 17331655 Jung S.S., Van Nostrand W.E. Abeta does not induce oxidative stress in human cerebrovascular smooth muscle cells. Neuroreport. 2002;13:1309–1312. 12151793 McKay T.B., Qu J., Liang F., Mueller A., Wiener-Kronish J., Xie Z., Akeju O. Tau as a serum biomarker of delirium after major cardiac surgery: a single centre case-control study. Br. J. Anaesth. 2022;129:e13–e16. doi: 10.1016/j.bja.2022.04.002. 10.1016/j.bja.2022.04.002 PMC9428914 35465951 Barriere D.A., Magalhaes R., Novais A., Marques P., Selingue E., Geffroy F., Marques F., Cerqueira J., Sousa J.C., Boumezbeur F., et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization. Nat. Commun. 2019;10:5699. doi: 10.1038/s41467-019-13575-7. 10.1038/s41467-019-13575-7 PMC6911097 31836716 Bankhead P., Loughrey M.B., Fernández J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-17204-5. 10.1038/s41598-017-17204-5 PMC5715110 29203879 Paxinos G., Watson C. 3rd Edition. Academic Press; 1997. The Rat Brain in Stereotaxic Coordinates. 39719574 2024 12 24 2024 12 24 2045-8118 21 1 2024 Dec 24 Fluids and barriers of the CNS Fluids Barriers CNS BOLD-CSF dynamics assessed using real-time phase contrast CSF flow interleaved with cortical BOLD MRI. 107 107 107 10.1186/s12987-024-00607-8 Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex. However, this technique is not quantitative, only captures unidirectional flow and is sensitive to B0-fluctuations. Real-time phase contrast (pcCSF) instead measures CSF flow dynamics in a fast, quantitative, bidirectional and B0-insensitive manner, but lacks information on hemodynamic brain oscillations. In this study we propose to combine the strengths of both sequences by interleaving real-time phase contrast with a cortical BOLD scan, thereby enabling the quantification of the interaction between CSF flow and cortical BOLD. Two experiments were performed. First, we compared the CSF flow measured using real-time phase contrast (pcCSF) with the inflow-sensitized BOLD (iCSF) measurements by interleaving both techniques at the repetition level and planning them at the same location. Next, we compared the BOLD-CSF coupling obtained using the novel pcCSF interleaved with cortical BOLD to the coupling obtained with the original iCSF. To time-lock the CSF fluctuations, participants were instructed to perform slow, abdominal paced breathing. pcCSF captures bidirectional CSF dynamics with a more pronounced in- and outflow curve than the original iCSF method. With the pcCSF method, the BOLD-CSF coupling was stronger (mean cross-correlation peak increase = 0.22, p = .008) and with a 1.9 s shorter temporal lag (p = .016), as compared to using the original iCSF technique. In this study, we introduce a new method to study the coupling of CSF flow measured in the fourth ventricle to cortical BOLD fluctuations. In contrast to the original approach, the use of phase contrast MRI to measure CSF flow provides a quantitative in- and outflow curve, and improved BOLD-CSF coupling metrics. © 2024. The Author(s). Roefs Emiel C A ECA C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. e.c.a.roefs@lumc.nl. Eiling Ingmar I C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. i.eiling@lumc.nl. de Bresser Jeroen J Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. van Osch Matthias J P MJP C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. Hirschler Lydiane L C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands. l.hirschler@lumc.nl. eng Journal Article 2024 12 24 England Fluids Barriers CNS 101553157 2045-8118 S88TT14065 Oxygen IM Humans Magnetic Resonance Imaging methods Male Adult Cerebrospinal Fluid physiology diagnostic imaging Cerebral Cortex diagnostic imaging physiology blood supply Female Young Adult Oxygen blood Bold Bold-CSF coupling Brain clearance CSF flow Glymphatic system Real-time phase contrast Declarations. Ethics approval and consent to participate: The experimental protocol was approved by the ethics committee of the Leiden University Medical Center under authorization number P07.096 and conducted according to the principles of the 2013 Declaration of Helsinki. All participants signed informed consent prior to participation. Consent of publication: Not applicable. Competing interests: The authors declare no competing interests. 2024 8 23 2024 12 10 2024 12 25 0 21 2024 12 25 0 20 2024 12 24 23 24 2024 12 24 epublish 39719574 10.1186/s12987-024-00607-8 10.1186/s12987-024-00607-8 PMC11669233 Rasmussen MK, Mestre H, Nedergaard M. Fluid transport in the brain. Physiol Rev. 2022;102(2):1025–151. PMC8897154 33949874 Williams SD, Setzer B, Fultz NE, Valdiviezo Z, Tacugue N, Diamandis Z, et al. Neural activity induced by sensory stimulation can drive large-scale cerebrospinal fluid flow during wakefulness in humans. PLoS Biol. 2023;21(3):e3002035. PMC10062585 36996009 Van Veluw SJ, Hou SS, Calvo-Rodriguez M, Arbel-Ornath M, Snyder AC, Frosch MP, et al. Vasomotion as a driving force for paravascular clearance in the awake mouse brain. Neuron. 2020;105(3):549–e615. PMC7028316 31810839 Holstein-Rønsbo S, Gan Y, Giannetto MJ, Rasmussen MK, Sigurdsson B, Beinlich FRM, et al. Glymphatic influx and clearance are accelerated by neurovascular coupling. Nat Neurosci. 2023;26(6):1042–53. PMC10500159 37264158 Mokri B. The Monro–Kellie hypothesis. Neurology. 2001;56(12):1746–8. 11425944 Fultz NE, Bonmassar G, Setsompop K, Stickgold RA, Rosen BR, Polimeni JR, et al. Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep. Science. 2019;366(6465):628–31. PMC7309589 31672896 Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, et al. Sleep drives metabolite clearance from the adult brain. Science. 2013;342(6156):373–7. PMC3880190 24136970 Yildiz S, Thyagaraj S, Jin N, Zhong X, Heidari Pahlavian S, Martin BA, et al. Quantifying the influence of respiration and cardiac pulsations on cerebrospinal fluid dynamics using real-time phase‐contrast MRI. J Magn Reson Imaging. 2017;46(2):431–9. 28152239 Töger J, Andersen M, Haglund O, Kylkilahti TM, Lundgaard I, Markenroth Bloch K. Real-time imaging of respiratory effects on cerebrospinal fluid flow in small diameter passageways. Magn Reson Med. 2022;88(2):770–86. PMC9324219 35403247 Laganà MM, Di Tella S, Ferrari F, Pelizzari L, Cazzoli M, Alperin N et al. Blood and cerebrospinal fluid flow oscillations measured with real-time phase-contrast MRI: breathing mode matters. Fluids Barriers CNS. 2022;19(1). PMC9749305 36517859 Liu P, Owashi K, Monnier H, Metanbou S, Capel C, Balédent O. Validating the accuracy of real-time phase-contrast MRI and quantifying the effects of free breathing on cerebrospinal fluid dynamics. Fluids Barriers CNS. 2024;21(1). PMC10921772 38454518 Rivera-Rivera LA, Vikner T, Eisenmenger L, Johnson SC, Johnson KM. Four‐dimensional flow MRI for quantitative assessment of cerebrospinal fluid dynamics: Status and opportunities. NMR Biomed. 2024;37(7). PMC11162953 38124351 Henningsson M, Mens G, Koken P, Smink J, Botnar RM. A new framework for interleaved scanning in cardiovascular MR: Application to image-based respiratory motion correction in coronary MR angiography. Magn Reson Med. 2015;73(2):692–6. 24639003 Dreha-Kulaczewski S, Joseph AA, Merboldt K-D, Ludwig H-C, Gärtner J, Frahm J. Inspiration is the major regulator of human CSF flow. J Neurosci. 2015;35(6):2485–91. PMC6605608 25673843 Chang C, Glover GH. Relationship between respiration, end-tidal CO2, and BOLD signals in resting-state fMRI. NeuroImage. 2009;47(4):1381–93. PMC2721281 19393322 Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. NeuroImage. 2012;62(2):782–90. 21979382 Fischl B, FreeSurfer. NeuroImage. 2012;62(2):774–81. PMC3685476 22248573 Cox RW. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73. 8812068 Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: the analysis of functional brain images. Elsevier; 2011. Vucevic D, Malis V, Bae WC, Ota H, Oshio K, McDonald MA, et al. Visualization of cerebrospinal fluid outflow and egress along the nerve roots of the lumbar spine. Bioengineering. 2024;11(7):708. PMC11273714 39061790 Proulx ST. Cerebrospinal fluid outflow: a review of the historical and contemporary evidence for arachnoid villi, perineural routes, and dural lymphatics. Cell Mol Life Sci. 2021;78(6):2429–57. PMC8004496 33427948 Peters K, Weiss K, Maintz D, Giese D. Influence of respiration-induced B0 variations in real‐time phase‐contrast echo planar imaging of the cervical cerebrospinal fluid. Magn Reson Med. 2019;82(2):647–57. 30957288 Pulseq [Internet]. Pulseq: Open-source pulse sequences. 2024 [cited 2024 December 19]. Available from: https://pulseq.github.io/ gammaSTAR [Internet]. Generalized MRI. Pulse Sequence Programming. 2024 [cited 2024 December 19]. Available from: https://gamma-star.mevis.fraunhofer.de/#/ trying2...
Impaired Glymphatic Function and Pulsation Alterations in a Mouse Model of Vascular Cognitive Impairment. | LitMetric
Large vessel disease and carotid stenosis are key mechanisms contributing to vascular cognitive impairment (VCI) and dementia. Our previous work, and that of others, using rodent models, demonstrated that bilateral common carotid stenosis (BCAS) leads to cognitive impairment via gradual deterioration of the neuro-glial-vascular unit and accumulation of amyloid-β (Aβ) protein. Since brain-wide drainage pathways (glymphatic) for waste clearance, including Aβ removal, have been implicated in the pathophysiology of VCI via glial mechanisms, we hypothesized that glymphatic function would be impaired in a BCAS model and exacerbated in the presence of Aβ. Male wild-type and Tg-SwDI (model of microvascular amyloid) mice were subjected to BCAS or sham surgery which led to a reduction in cerebral perfusion and impaired spatial learning acquisition and cognitive flexibility. After 3 months survival, glymphatic function was evaluated by cerebrospinal fluid (CSF) fluorescent tracer influx. We demonstrated that BCAS caused a marked regional reduction of CSF tracer influx in the dorsolateral cortex and CA1-DG molecular layer. In parallel to these changes increased reactive astrogliosis was observed post-BCAS. To further investigate the mechanisms that may lead to these changes, we measured the pulsation of cortical vessels. BCAS impaired vascular pulsation in pial arteries in WT and Tg-SwDI mice. Our findings show that BCAS influences VCI and that this is paralleled by impaired glymphatic drainage and reduced vascular pulsation. We propose that these additional targets need to be considered when treating VCI.
Similar Publications
Brain Res Bull
December 2024
Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University , Hangzhou, Zhejiang 310058, China. Electronic address:
Cognitive disorders are a common clinical manifestation, including a deterioration in the patient's memory ability, attention, executive power, language, and other functions. The contributing factors of cognitive disorders are numerous and diverse in nature, including organic diseases and other mental disorders. Neurodegenerative diseases are a common type of organic disease related to the pathology of neuronal death and disruption of glial cell balance, ultimately accompanied with cognitive impairment.
View Article and Find Full Text PDF
Purpose : We aimed to characterize and further understand CSF circulation and outflow of rabbits. To our knowledge, there is no research on contrast material-enhanced MR cisternography (CE-MRC) with T1 and T2 mapping in the rabbit model using a clinical 3-T MR unit without a stereotaxic frame.Materials And Methods : Twenty-one rabbits were included in the study.
View Article and Find Full Text PDF
Background : Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility.Methods : We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials.
View Article and Find Full Text PDF
Brain waste clearance from the interstitial fluid environment is challenging to measure, which has contributed to controversy regarding the significance of glymphatic transport impairment for neurodegenerative processes. Dynamic contrast enhanced MRI (DCE-MRI) with cerebrospinal fluid administration of Gd-tagged tracers is often used to assess glymphatic system function. We previously quantified glymphatic transport from DCE-MRI data utilizing regularized optimal mass transport (rOMT) analysis, however, information specific to glymphatic clearance was not directly derived.
View Article and Find Full Text PDF
Background : Cerebrospinal fluid (CSF) motion and pulsatility has been proposed to play a crucial role in clearing brain waste. Although its driving forces remain debated, increasing evidence suggests that large amplitude vasomotion drives such CSF fluctuations. Recently, a fast blood-oxygen-level-dependent (BOLD) fMRI sequence was used to measure the coupling between CSF fluctuations and low-frequency hemodynamic oscillations in the human cortex.
View Article and Find Full Text PDF
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!