Modeling the spread of infectious diseases in space and time needs to take care of complex dependencies and uncertainties. Machine learning methods, and neural networks, in particular, are useful in modeling this sort of complex problems, although they generally lack of probabilistic interpretations. We propose a neural network method embedded in a Bayesian framework for modeling and predicting the number of cases of infectious diseases in areal units. A key feature is that our combined model considers the impact of human movement on the spread of the infectious disease, as an additional random factor to the also considered spatial neighborhood and temporal correlation components. Our model is evaluated over a COVID-19 dataset for 245 health zones of Castilla-Leon (Spain). The results show that a Bayesian model informed by a neural network method is generally able to predict the number of cases of COVID-19 in both space and time, with the human mobility factor having a strong influence on the model, together with the number of infections and deaths in nearby areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787453 | PMC |
http://dx.doi.org/10.1007/s00477-021-02168-w | DOI Listing |
Asian Pac J Cancer Prev
January 2025
Department of Physics, Faculty of Sciences, Arak University, Arak, Iran.
Objective: Addressing the rising cancer rates through timely diagnosis and treatment is crucial. Additionally, cancer survivors need to understand the potential risk of developing secondary cancer (SC), which can be influenced by several factors including treatment modalities, lifestyle choices, and habits such as smoking and alcohol consumption. This study aims to establish a novel relationship using linear regression models between dose and the risk of SC, comparing different prediction methods for lung, colon, and breast cancer.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Nuclear Medicine, Busan Paik Hospital, University of Inje College of Medicine, Busan, Republic of Korea.
Objective: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regional lymph node metastasis in patients with colon cancer.
Methods: This retrospective study included 193 patients diagnosed with colon cancer between January 2014 and December 2017. All patients underwent F-18 FDG PET/CT and blood test before surgery.
Geroscience
January 2025
State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.
Biological brain age is a brain-predicted age using machine learning to indicate brain health and its associated conditions. The presence of an older predicted brain age relative to the actual chronological age is indicative of accelerated aging processes. Consequently, the disparity between the brain's chronological age and its predicted age (brain-age gap) and the factors influencing this disparity provide critical insights into cerebral health dynamics during aging.
View Article and Find Full Text PDFBioDrugs
January 2025
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
Background: With the expiration of patents for multiple biotherapeutics, biosimilars are gaining traction globally as cost-effective alternatives to the original products. Glycosylation, a critical quality attribute, makes glycosimilarity assessment pivotal for biosimilar development. Given the complexity of glycoanalytical profiles, assessing glycosimilarity is nontrivial.
View Article and Find Full Text PDFPurpose: This brief report aims to summarize and discuss the methodologies of eXplainable Artificial Intelligence (XAI) and their potential applications in surgery.
Methods: We briefly introduce explainability methods, including global and individual explanatory features, methods for imaging data and time series, as well as similarity classification, and unraveled rules and laws.
Results: Given the increasing interest in artificial intelligence within the surgical field, we emphasize the critical importance of transparency and interpretability in the outputs of applied models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!