From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.

Prog Mol Biol Transl Sci

Center for Applied Nanobioscience and Medicine, Phoenix, AZ, United States; Department of Basic Medical Sciences, College of Medicine-Phoenix, The University of Arizona, Phoenix, AZ, United States. Electronic address:

Published: March 2022

The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ. The advantages of such systems are not only their ability to recapitulate the complex biochemical interactions between different human cell types but also to incorporate physical forces, including shear stress and mechanical stretching or compression. To improve this model, and to reproduce the absorption, distribution, metabolism, and elimination process of an exogenous compound, organ-on-chips can even be linked fluidically to mimic physiological interactions between different organs, leading to the development of body-on-chips. Although these technologies are still at a young age and need to address a certain number of limitations, they already demonstrated their relevance to study the effect of drugs or toxins on organs, displaying a similar response to what is observed in vivo. The purpose of this review is to present the evolution from organ-on-chip to body-on-chip, examine their current use for drug testing and discuss their advantages and future challenges they will face in order to become an essential pillar of pharmaceutical research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.pmbts.2021.07.019DOI Listing

Publication Analysis

Top Keywords

organ-on-chip body-on-chip
8
drug testing
8
drug
5
body-on-chip generation
4
generation microfluidics
4
microfluidics platforms
4
platforms vitro
4
vitro drug
4
drug efficacy
4
efficacy toxicity
4

Similar Publications

Background: Neuronal networks receive and deliver information to regulate bodily functions while the vascular network provides oxygen, nutrients, and signaling molecules to tissues. Neurovascular interactions are vital for both tissue development and maintaining homeostasis in adulthood; these two network systems align and reciprocally communicate with one another. Although communication between network systems has been acknowledged, the lack of relevant in vitro models has hindered research at the mechanistic level.

View Article and Find Full Text PDF

Developing novel drug formulations and progressing them to the clinical environment relies on preclinical in vitro studies and animal tests to evaluate efficacy and toxicity. However, these current techniques have failed to accurately predict the clinical success of new therapies with a high degree of certainty. The main reason for this failure is that conventional in vitro tissue models lack numerous physiological characteristics of human organs, such as biomechanical forces and biofluid flow.

View Article and Find Full Text PDF

From organ-on-chip to body-on-chip: The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing.

Prog Mol Biol Transl Sci

March 2022

Center for Applied Nanobioscience and Medicine, Phoenix, AZ, United States; Department of Basic Medical Sciences, College of Medicine-Phoenix, The University of Arizona, Phoenix, AZ, United States. Electronic address:

The high failure rate in drug development is often attributed to the lack of accurate pre-clinical models that may lead to false discoveries and inconclusive data when the compounds are eventually tested in clinical phase. With the evolution of cell culture technologies, drug testing systems have widely improved, and today, with the emergence of microfluidics devices, drug screening seems to be at the dawn of an important revolution. An organ-on-chip allows the culture of living cells in continuously perfused microchambers to reproduce physiological functions of a particular tissue or organ.

View Article and Find Full Text PDF

Modeling the Human Body on Microfluidic Chips.

Trends Biotechnol

August 2021

iBB - Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. Electronic address:

Animals often fail to faithfully mimic human diseases and drug toxicities, and most in vitro models are not complex enough to recapitulate human body function and pathophysiology. Organ-on-chip culture technology, however, offers a promising tool for the study of tissue development and homeostasis, which has brought us one step closer to performing human experimentation in vitro. To recapitulate the complex functionality of multiple organs at once, their respective on-chip models can be linked to create a functional human body-on-chip platform.

View Article and Find Full Text PDF

Dramatically rising costs in drug development are in large part because of the high failure rates in clinical phase trials. The poor correlation of animal studies to human toxicity and efficacy have led many developers to question the value of requiring animal studies in determining which drugs should enter in-human trials. Part 1 of this 2-part series examined some of the data regarding the lack of concordance between animal toxicity studies and human trials, as well as some of the potential reasons behind it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!